Enhancing Lime-Based Mortars with Multiwalled Carbon Nanotubes—Composites for Historic Building Restoration: Mechanical, Thermal, and Hygric Performance Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Evaluation of the Nanoadditive Dispersion Technique
2.3. Characterisation of Binders and Aggregate
2.4. Methods of Testing Fresh and Hardened Mortars
3. Results
3.1. Characterisation of Raw Materials
3.2. Dispersion Techniques
3.3. Properties of 28-Day and 90-Day Hardened Mortars
4. Conclusions
- In CL mortars, a 0.3% CNT dosage led to a more than 30% increase in compressive strength, addressing their typically low mechanical performance while preserving original porosity and hygric behaviour.
- In HL mortars, CNT addition resulted in up to 65% higher compressive strength, 19% better flexural strength, and improved thermal conductivity and heat storage, due to reduced porosity and the inherent properties of CNTs.
- CNT-modified HL mortars also showed accelerated drying and enhanced water vapour transfer, which are valuable for addressing moisture-related issues in historic masonry.
- Structural and hygric compatibility with traditional materials was preserved in both mortar types, making the nanomodified mortars suitable for heritage restoration.
- Overall, this research demonstrates that CNT-enhanced lime mortars, including both CL and HL systems, can serve as effective and compatible materials for the repair and preservation of historic buildings.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CL | Calcium Lime |
CNT | Carbon Nanotube |
GN | Graphene Nanoplatelet |
HL | Hydraulic Lime |
MWCNT | Multiwalled Carbon Nanotube |
NHL | Natural Hydraulic Lime |
NM | Nanomaterial |
PC | Portland Cement |
References
- Groot, C.; Veiga, R.; Papayianna, I.; Hees, R.H.; Secco, M.; Alvarez, J.I.; Faria, P.; Stefanidou, M. RILEM TC 277-LHS report: Lime-based mortars for restoration—A review on long-term durability aspects and experience from practice. Mater. Struct. 2022, 55, 245. [Google Scholar] [CrossRef]
- Elsen, J. Microscopy of historic mortars—A review. Cem. Concr. Res. 2006, 36, 1416–1424. [Google Scholar] [CrossRef]
- Nogueira, R.; Pinto, A.P.F.; Gomes, A. Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses. Cem. Concr. Compos. 2018, 89, 192–204. [Google Scholar] [CrossRef]
- CEMBUREAU. Activity Report 2023; CEMBUREAU—The European Cement Association: Brussels, Belgium, 2024; pp. 29–30. [Google Scholar]
- Loke, M.P.; Pallav, K.; Cultrone, G.; Di Filippo, C. Investigating the standard design and production procedure of heritage mortars for compatible and durable masonry restoration. J. Build. Eng. 2024, 94, 110012. [Google Scholar] [CrossRef]
- Mosquera, M.J.; Silva, B.; Prieto, B.; Ruiz-Herrera, E. Addition of cement to lime-based mortars: Effect on pore structure and vapor transport. Cem. Concr. Res. 2006, 36, 1416–1424. [Google Scholar] [CrossRef]
- Rakhsh Mahpour, A.; Ventura, H.; Ardanuy, M.; Rosell, J.R.; Claramunt, J. The effect of fibres and carbonation conditions on the mechanical properties and microstructure of lime/flax composites. Constr. Build. Mater. 2023, 138, 104981. [Google Scholar] [CrossRef]
- Klisińska-Kopacz, A.; Tišlova, R.; Adamski, G.; Kozłowski, R. Pore structure of historic and repair Roman cement mortars to establish their compatibility. J. Cult. Herit. 2010, 11, 404–410. [Google Scholar] [CrossRef]
- Ayta, A.; Bouzerd, H.; Ali-Boucetta, T.; Navarro, A.; Benmalek, M.L. Valorisation of waste glass powder and brick dust in air-lime mortars for restoration of historical buildings: Case study theatre of Skikda (Northern Algeria). Constr. Build. Mater. 2022, 315, 125681. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Faria, J.; Jalali, S. Some considerations about the use of lime–cement mortars for building conservation purposes in Portugal: A reprehensible option or a lesser evil? Constr. Build. Mater. 2012, 30, 488–494. [Google Scholar] [CrossRef]
- Posani, M.; Veiga, R.; De Freitas, V.P. Thermal renders for traditional and historic masonry walls: Comparative study and recommendations for hygric compatibility. Build. Environ. 2023, 228, 109737. [Google Scholar] [CrossRef]
- Jeevanagoudar, Y.V.; Krishna, R.H.; Gowda, R.; Preethan, R.; Prabhakara, R. Improved mechanical properties and piezoresistive sensitivity evaluation of MWCNTs reinforced cement mortars. Constr. Build. Mater. 2017, 144, 188–194. [Google Scholar] [CrossRef]
- Dalla, P.T.; Tragazikis, I.K.; Trakakis, G.; Galiotis, C.; Dassios, K.G.; Matikas, T.E. Multifunctional Cement Mortars Enhanced with Graphene Nanoplatelets and Carbon Nanotubes. Sensors 2021, 21, 933. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Li, C.; Zhang, N.; Liu, R.; Lu, C. Improvement of Flexural and Compressive Strength of Cement Mortar by Graphene Nanoplatelets. Open J. Civ. Eng. 2021, 15, 165–171. [Google Scholar] [CrossRef]
- Dimou, A.-E.; Charalampidou, C.-M.; Metaxa, Z.S.; Kourkoulis, S.K.; Karatasios, I.; Asimakopoulos, G.; Alexopoulos, N.D. Me-chanical and electrical properties of hydraulic lime pastes reinforced with carbon nanomaterials. Procedia Struct. Integr. 2020, 28, 1694–1701. [Google Scholar] [CrossRef]
- Dimou, A.-E.; Metaxa, Z.S.; Alexopoulos, N.D.; Kourkoulis, S.K. Assessing the potential of nano-reinforced blended lime-cement pastes as self-sensing materials for restoration applications. Mater. Today 2022, 62, 2482–2487. [Google Scholar] [CrossRef]
- Faria, P.; Duarte, P.; Barbosa, D.; Ferrira, I. New composite of natural hydraulic lime mortar with graphene oxide. Constr. Build. Mater. 2017, 156, 1150–1157. [Google Scholar] [CrossRef]
- Dorin, P.; Doina, P.; Simna, V.; Maria, P.; Stanca, C.; Codruta, S.; Marioara, M.; Raluca, I.; Rayvan, E. Properties Evolution of Some Hydraulic Mortars Incorporating Graphene Oxides. Buildings 2022, 12, 864. [Google Scholar] [CrossRef]
- Dimou, A.-E.; Metaxa, Z.S.; Kourkoulis, S.K.; Alexopoulos, N.D. Piezoresistive Properties of Natural Hydraulic Lime Binary Pastes with Incorporated Carbon-Based Nanomaterials under Cyclic Compressive Loadings. Nanomaterials 2022, 12, 3695. [Google Scholar] [CrossRef]
- Nguyen, V.S.; Rouxel, D.; Vincent, B. Dispersion of nano-particles: From organic solvents to polymer solutions. Ultrason. Sonochem. 2014, 21, 149–153. [Google Scholar] [CrossRef]
- Debbarma, K.; Debnath, B.; Sarkar, P.P. A comprehensive review on the usage of nanomaterials in asphalt mixes. Constr. Build. Mater. 2022, 361, 129634. [Google Scholar] [CrossRef]
- Zhou, N.; Wang, S.; Walsh, F.C. Effective particle dispersion via high-shear mixing of the electrolyte for electroplating a nickel-molybdenum disulphide composite. Electrochim. Acta 2018, 283, 568–577. [Google Scholar] [CrossRef]
- Kaur, I.; Ellis, L.-J.; Romer, I.; Tantra, R.; Carriere, M.; Allard, S.; Mayne-L’Hermite, M.; Minelli, C.; Unger, W.; Potthoff, A.; et al. Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization. J. Vis. Exp. 2017, 130, 56074. [Google Scholar]
- Tantra, R.; Oksel, C.; Robinson, K.N.; Sikora, A.; Wang, X.Z.; Wilkins, T.A. A method for assessing nanomaterial dispersion quality based on principal component analysis of particle size distribution data. Particuology 2015, 22, 30–38. [Google Scholar] [CrossRef]
- Lau, K.; Lu, M.; Lam, C.; Cheung, H.; Sheng, F.; Li, H. Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: The role of solvent for nanotube dispersion. Compos. Sci. Technol. 2005, 65, 719–725. [Google Scholar] [CrossRef]
- Asadi, A.; Pourfattah, F.; Miklós Szilágyi, I.; Afrand, M.; Żyła, G.; Ahn, H.S.; Wongwises, S.; Nguyen, H.M.; Arabkoohsar, A.; Mahian, O. Effect of sonication characteristics on stability, thermo-physical properties, and heat transfer of nanofluids: A comprehensive review. Ultrason. Sonochem. 2019, 58, 104701. [Google Scholar] [CrossRef] [PubMed]
- Moshiul Alam, A.K.M. Methods of nanoparticle dispersion in the polymer matrix. In Nanoparticle-Based Polymer Composites; Rangappa, S.M., Parameswaranpillai, J., Gowda, T.G.Y., Siengchin, S., Seydibeyoglu, M.O., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 469–479. [Google Scholar]
- Azunna, S.U.; Aziz, F.N.A.B.A.; Al-Ghazali, N.A.; Rashid, R.S.M.; Bakar, N.A. Review on the mechanical properties of rubberized geopolymer concrete. Clean. Mater. 2024, 11, 100225. [Google Scholar] [CrossRef]
- Lauermannová, A.-M.; Jankovský, O.; Jiříčková, A.; Sedmidubský, D.; Záleská, M.; Pivák, A.; Pavlíkvá, M.; Pavlík, Z. MOC Composites for Construction: Improvement in Water Resistance by Addition of Nanodopants and Polyphenol. Polymers 2023, 15, 4300. [Google Scholar] [CrossRef] [PubMed]
- EN 459-2; Building Lime—Part 2: Test Methods. CEN: Brussels, Belgium, 2021.
- Selvam, C.; Mohan Lal, D.; Harish, S. Enhanced heat transfer performance of an automobile radiator with graphene based suspensions. Appl. Therm. Eng. 2017, 123, 50–60. [Google Scholar] [CrossRef]
- Zaman, A.C.; Kaya, F.; Kaya, C. A study on optimum surfactant to multiwalled carbon nanotube ratio in alcoholic stable suspensions via UV–Vis absorption spectroscopy and zeta potential analysis. Ceram. Int. 2020, 46, 29120–29129. [Google Scholar] [CrossRef]
- Lauermannová, A.-M.; Lojka, M.; Sklenka, J.; Záleská, M.; Pavlíková, M.; Pivák, A.; Pavlík, Z.; Jankovský, O. Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industry. FlatChem 2021, 29, 100284. [Google Scholar] [CrossRef]
- Petkova, B.; Tcholakova, S.; Denkov, N. Foamability of surfactant solutions: Interplay between adsorption and hydrodynamic conditions. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127009. [Google Scholar] [CrossRef]
- Kapicová, A.; Pivák, A.; Záleská, M.; Pavlíková, M.; Pavlík, Z. Influence of different surfactants on hydrated lime pastes modified with CNTs. In Proceedings of the International Conference of Numerical Analysis and Applied Mathematics Icnaam 2021, Rhodes, Greece, 20–26 September 2021. [Google Scholar]
- EN 1015-1; Methods of Test for Mortar for Masonry—Part 1: Determination of Particle Size Distribution (by Sieve Analysis). CEN: Brussels, Belgium, 1999.
- EN 1015-3; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table). CEN: Brussels, Belgium, 2000.
- EN 1015-10; Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. CEN: Brussels, Belgium, 2000.
- EN 1015-11; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. CEN: Brussels, Belgium, 2020.
- EN 12504-4; Testing Concrete in Structures—Part 4: Determination of Ultrasonic Pulse Velocity. CEN: Brussels, Belgium, 2021.
- EN 1015-18; Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillarity Action of Hardened Mortar. CEN: Brussels, Belgium, 2003.
- Pavlík, Z.; Černý, R. Determination of moisture diffusivity as a function of both moisture and temperature. Int. J. Thermophys. 2012, 33, 1704–1714. [Google Scholar] [CrossRef]
- EN 16322; Conservation of Cultural Heritage—Test Methods—Determination of Drying Properties. CEN: Brussels, Belgium, 2013.
- Drougkas, A.; Sarhosis, V.; Basheer, V.; D’Alessandro, A.; Ubertini, F. Design of a smart lime mortar with conductive micro and nano fillers for structural health monitoring. Constr. Build. Mater. 2023, 367, 130024. [Google Scholar] [CrossRef]
- Pavlík, Z.; Vyšvařil, M.; Pavliková, M.; Bayer, P.; Pivák, A.; Rovaníková, P.; Záleská, M. Lightweight pumice mortars for repair of historic buildings –Assessment of physical parameters, engineering properties and durability. Constr. Build. Mater. 2023, 404, 133275. [Google Scholar] [CrossRef]
- Silva, B.A.; Ferreira Pinto, A.P.; Gomes, A. Natural hydraulic lime versus cement for blended lime mortars for restoration works. Constr. Build. Mater. 2015, 94, 346–360. [Google Scholar] [CrossRef]
- Li, G.Y.; Wnag, P.M.; Zhao, X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef]
- Van Audenrode, F.; De Kock, T. Testing historical recipes with organic additives to alter the water absorption of traditional lime Mortar. MATEC Web Conf. 2024, 403, 03010. [Google Scholar] [CrossRef]
- Vyšvařil, M.; Pavlíková, M.; Záleská, M.; Pivák, A.; Žižlavský, T.; Rovnaníková, P.; Bayer, P.; Pavlík, Z. Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Constr. Build. Mater. 2020, 263, 120617. [Google Scholar] [CrossRef]
- Gonçalves, T.D.; Brito, V. Artisanal Lime Coatings and Their Influence on Moisture Transport During Drying. In Historic Mortars; Hughes, J., Válek, J., Groot, C., Eds.; Springer: Cham, Switzerland, 2019; pp. 241–253. [Google Scholar]
- Salomão, M.C.d.F.; Bauer, E.; Kazmierczak, C.d.S. Drying parameters of rendering mortars. Ambiente Construido 2018, 18, 7–19. [Google Scholar] [CrossRef]
- Flores-Colen, I.; Silva, L.; de Brito, J.; de Feritas, V.P. Drying index for in-service physical performance assessment of renders. Constr. Build. Mater. 2016, 112, 1101–1109. [Google Scholar] [CrossRef]
- Scheffler, G.A.; Plagge, R. Introduction of a Drying Coefficient for Building Materials. ASHRAE Trans. 2010, 116, 1–12. [Google Scholar]
Mortar Mix | Lime Hydrate | Hydraulic Lime | Water | Silica Sand | CNTs | Triton® X-100 | Defoamer |
---|---|---|---|---|---|---|---|
CL-R | 1500 | - | 1575 | 3 × 1500 | - | - | - |
CL-CNT0.1 | 1500 | - | 1620 | 3 × 1500 | 1.5 | 1.5 | 0.675 |
CL-CNT0.3 | 1500 | - | 1575 | 3 × 1500 | 4.5 | 4.5 | 2.025 |
CL-CNT0.5 | 1500 | - | 1545 | 3 × 1500 | 7.5 | 7.5 | 3.375 |
HL-R | - | 1500 | 1015 | 3 × 1500 | - | - | - |
HL-CNT0.1 | - | 1500 | 1015 | 3 × 1500 | 1.5 | 1.5 | 0.675 |
HL-CNT0.3 | - | 1500 | 1015 | 3 × 1500 | 4.5 | 4.5 | 2.025 |
HL-CNT0.5 | - | 1500 | 1015 | 3 × 1500 | 7.5 | 7.5 | 3.375 |
Sample | Dimensions | Used for Testing: |
---|---|---|
Prismatic | Structural parameters Flexural strength Young’s modulus | |
Cubic | Compressive strength Thermal properties Hygric properties Drying characteristics |
Property | Symbol | Unit | ECU * (%) | Standard /Method |
---|---|---|---|---|
Bulk density | ρb | kg∙m−3 | 1.4 | EN 1015-10 [38] |
Specific density | ρm | kg∙m−3 | 1.2 | He pycnometry |
Open porosity | ψ | % | 2.0 | EN 1015-10/He pycnometry |
Pore size diameter | dp | cm3∙g−1 | - | Mercury intrusion Porosimetry (MIP) |
Average pore diameter | da | μm | - | MIP |
Pore size distribution | PSD | % | - | MIP |
Flexural strength | ff | MPa | 1.4 | EN 1015-11 [39] |
Compressive strength | fc | MPa | 1.4 | EN 1015-11 [39] |
Young’s modulus | E | GPa | 2.3 | EN 12504-4 [40] |
Thermal conductivity | λ | W∙m−1∙K−1 | 2.3 | Transient pulse technique |
Volumetric heat capacity | CV | MJ∙m−3∙K−1 | 2.3 | Transient pulse technique |
Water absorption coefficient | Aw | kg∙m−2∙s−1/2 | 2.3 | EN 1015-18 [41] |
24 h water absorption | Wa24 | kg∙m−2 | 1.4 | EN 1015-18 [41] |
Apparent moisture diffusivity | κ | m2∙s−1 | 2.3 | EN 1015-18 [41] |
Phase 1 drying rate | D1 | kg∙m−2∙h−1 | - | EN 16322 [43] |
Phase 2 drying rate | D2 | kg∙m−2∙h−1/2 | - | EN 16322 [43] |
Drying index | DI | - | - | EN 16322 [43] |
Material | Lime Hydrate | Hydraulic Lime | Silica Sand |
---|---|---|---|
CaO | 95.31 | 57.84 | 0.01 |
Al2O3 | 3.07 | 11.63 | 3.23 |
SiO2 | 0.27 | 20.45 | 96.34 |
MgO | 1.22 | 1.47 | 0.35 |
Fe2O3 | 0.06 | 1.78 | 0.04 |
SrO | 0.04 | 0.05 | - |
NiO | 0.03 | - | - |
Na2O | - | 2.38 | - |
K2O | - | 2.32 | 0.01 |
SO3 | - | 1.43 | 0.01 |
MnO | - | 0.32 | - |
TiO2 | - | 0.26 | 0.01 |
ZrO | - | 0.07 | - |
∑ | 100.00 | 100.00 | 100.00 |
Material | Loose Bulk Density (kg·m−3) | Specific Density (kg·m−3) | Blaine Specific Surface (m2·kg) |
---|---|---|---|
Lime hydrate | 445 | 2228 | 1655 |
Hydraulic lime | 788 | 2625 | 358 |
Silica sand | 1671 | 2646 | - |
Mortar | Bulk Density ρb (kg·m−3) | Specific Density ρs (kg·m−3) | Porosity ψ (%) | |||
---|---|---|---|---|---|---|
28 Days | 90 Days | 28 Days | 90 Days | 28 Days | 90 Days | |
CL-R | 1656 ± 23 | 1675 ± 23 | 2545 ± 31 | 2552± 31 | 34.9 ± 0.7 | 34.4 ± 0.7 |
CL-CNT0.1 | 1599 ± 22 | 1618 ± 23 | 2535 ± 30 | 2548 ± 31 | 36.9 ± 0.7 | 35.0 ± 0.7 |
CL-CNT0.3 | 1617 ± 23 | 1659 ± 23 | 2537 ± 30 | 2550 ± 31 | 36.3 ± 0.7 | 34.9 ± 0.7 |
CL-CNT0.5 | 1601 ± 22 | 1659 ± 23 | 2538 ± 30 | 2549 ± 31 | 36.9 ± 0.7 | 34.9 ± 0.7 |
HL-R | 1740 ± 24 | 1754 ± 25 | 2575 ± 31 | 2577 ± 31 | 32.4 ± 0.6 | 31.9 ± 0.6 |
HL-CNT0.1 | 1900 ± 27 | 1908 ± 27 | 2578 ± 31 | 2599 ± 31 | 26.3 ± 0.5 | 26.6 ± 0.5 |
HL-CNT0.3 | 1893 ± 27 | 1902 ± 27 | 2563 ± 31 | 2596 ± 31 | 26.2 ± 0.5 | 26.7 ± 0.5 |
HL-CNT0.5 | 1881 ± 26 | 1902 ± 27 | 2547 ± 31 | 2597 ± 31 | 26.2 ± 0.5 | 26.8 ± 0.5 |
Mortar | Total Pore Volume dp (cm3·g−1) | Average Pore Diameter da (µm) |
---|---|---|
CL-R | 0.165 | 0.197 |
CL-CNT0.1 | 0.181 | 0.218 |
CL-CNT0.3 | 0.174 | 0.212 |
CL-CNT0.5 | 0.180 | 0.219 |
HL-R | 0.183 | 0.068 |
HL-CNT0.1 | 0.110 | 0.055 |
HL-CNT0.3 | 0.113 | 0.058 |
HL-CNT0.5 | 0.117 | 0.063 |
Mortar | Flexural Strength ff (MPa) | Compressive Strength fc (MPa) | Dynamic Modulus of Elasticity E (GPa) | |||
---|---|---|---|---|---|---|
28 Days | 90 Days | 28 Days | 90 Days | 28 Days | 90 Days | |
CL-R | 0.48 ± 0.01 | 0.86 ± 0.01 | 0.55 ± 0.01 | 1.86 ± 0.03 | 4.2 ± 0.1 | 4.5 ± 0.1 |
CL-CNT0.1 | 0.48 ± 0.01 | 0.82 ± 0.01 | 0.55 ± 0.01 | 1.98 ± 0.03 | 3.3 ± 0.1 | 3.7 ± 0.1 |
CL-CNT0.3 | 0.51 ± 0.01 | 0.88 ± 0.01 | 0.72 ± 0.01 | 2.28 ± 0.03 | 3.5 ± 0.1 | 3.7 ± 0.1 |
CL-CNT0.5 | 0.39 ± 0.01 | 0.77 ± 0.01 | 0.44 ± 0.01 | 1.95 ± 0.03 | 3.2 ± 0.1 | 3.4 ± 0.1 |
HL-R | 2.16 ± 0.03 | 2.33 ± 0.03 | 7.43 ± 0.10 | 10.20 ± 0.14 | 10.3 ± 0.3 | 10.7 ± 0.3 |
HL-CNT0.1 | 2.42 ± 0.03 | 2.45 ± 0.04 | 11.78 ± 0.16 | 14.36 ± 0.20 | 12.0 ± 0.3 | 12.2 ± 0.3 |
HL-CNT0.3 | 2.57 ± 0.04 | 2.60 ± 0.03 | 12.28 ± 0.17 | 16.79 ± 0.24 | 11.9 ± 0.3 | 12.1 ± 0.3 |
HL-CNT0.5 | 2.42 ± 0.03 | 2.24 ± 0.03 | 11.27 ± 0.16 | 14.65 ± 0.21 | 11.5 ± 0.3 | 11.7 ± 0.3 |
Mortar | Thermal Conductivity λ (W·m−1·K−1) | Volumetric Heat Capacity Cv × 106 (J·m−3·K−1) |
---|---|---|
CL-R | 1.125 ± 0.026 | 1.176 ± 0.027 |
CL-CNT0.1 | 1.056 ± 0.024 | 1.153 ± 0.027 |
CL-CNT0.3 | 1.094 ± 0.025 | 1.174 ± 0.027 |
CL-CNT0.5 | 1.096 ± 0.025 | 1.182 ± 0.027 |
HL-R | 1.107 ± 0.025 | 1.070 ± 0.025 |
HL-CNT0.1 | 1.248 ± 0.029 | 1.312 ± 0.030 |
HL-CNT0.3 | 1.252 ± 0.029 | 1.323 ± 0.030 |
HL-CNT0.5 | 1.280 ± 0.029 | 1.362 ± 0.031 |
Mortar | Water Absorption Coefficient Aw (kg·m−2·s−1/2) | 24 h Water Absorption Wa24 (kg·m−2) |
---|---|---|
CL-R | 0.31 ± 0.01 | 9.40 ± 0.13 |
CL-CNT0.1 | 0.30 ± 0.01 | 9.47 ± 0.13 |
CL-CNT0.3 | 0.30 ± 0.01 | 9.44 ± 0.13 |
CL-CNT0.5 | 0.30 ± 0.01 | 9.65 ± 0.14 |
HL-R | 0.08 ± 0.01 | 8.73 ± 0.12 |
HL-CNT0.1 | 0.08 ± 0.01 | 8.78 ± 0.12 |
HL-CNT0.3 | 0.07 ± 0.01 | 8.75 ± 0.12 |
HL-CNT0.5 | 0.07 ± 0.01 | 8.59 ± 0.12 |
Mortar | Phase 1 Drying Rate D1 (kg·m−2·h−1) | Phase 2 Drying Rate D2 (kg·m−2·h−1/2) | Drying Index DI (-) |
---|---|---|---|
CL-R | 0.36 | 1.57 | 0.15 |
CL-CNT0.1 | 0.29 | 1.64 | 0.15 |
CL-CNT0.3 | 0.29 | 1.60 | 0.15 |
CL-CNT0.5 | 0.31 | 1.75 | 0.14 |
HL-R | 0.26 | 0.88 | 0.19 |
HL-CNT0.1 | 0.32 | 1.05 | 0.16 |
HL-CNT0.3 | 0.30 | 1.11 | 0.16 |
HL-CNT0.5 | 0.27 | 1.13 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pivák, A.; Záleská, M.; Pavlíková, M.; Pavlík, Z. Enhancing Lime-Based Mortars with Multiwalled Carbon Nanotubes—Composites for Historic Building Restoration: Mechanical, Thermal, and Hygric Performance Analysis. J. Compos. Sci. 2025, 9, 266. https://doi.org/10.3390/jcs9060266
Pivák A, Záleská M, Pavlíková M, Pavlík Z. Enhancing Lime-Based Mortars with Multiwalled Carbon Nanotubes—Composites for Historic Building Restoration: Mechanical, Thermal, and Hygric Performance Analysis. Journal of Composites Science. 2025; 9(6):266. https://doi.org/10.3390/jcs9060266
Chicago/Turabian StylePivák, Adam, Martina Záleská, Milena Pavlíková, and Zbyšek Pavlík. 2025. "Enhancing Lime-Based Mortars with Multiwalled Carbon Nanotubes—Composites for Historic Building Restoration: Mechanical, Thermal, and Hygric Performance Analysis" Journal of Composites Science 9, no. 6: 266. https://doi.org/10.3390/jcs9060266
APA StylePivák, A., Záleská, M., Pavlíková, M., & Pavlík, Z. (2025). Enhancing Lime-Based Mortars with Multiwalled Carbon Nanotubes—Composites for Historic Building Restoration: Mechanical, Thermal, and Hygric Performance Analysis. Journal of Composites Science, 9(6), 266. https://doi.org/10.3390/jcs9060266