Micromechanical Analyses on Three-Dimensional Response of Compressive Failure in Unidirectional CFRP
Abstract
:1. Introduction
2. Numerical Models
2.1. Geometry and Finite Element Mesh
2.2. Material Models of Constituent Materials
2.3. Boundary Conditions
2.4. Evaluation of Results
3. Validation
3.1. Theoretical Model
3.2. Comparison Between Numerical and Theoretical Models
4. Results and Discussions
4.1. Process of Compressive Failure
4.2. Depending Factors of Failure Response
4.3. General Three-Dimensional Response of Compressive Failure
4.4. Comparison Between Results of Experiments and Present Numerical Analysis
5. Conclusions
- Comparisons of the present results with those of the established theoretical model showed the feasibility of the present model.
- The present results show that the compressive strength of the composite decreases with the increase in the fiber misalignment, which is often pointed out in experiments in studies.
- The applied macroscopic shear stress had a significant effect, decreasing the compressive strength of the composites because it caused extra inclination of the fiber at the beginning of the compression.
- The direction of shear deformation induced by the compressive loading was three-dimensionally changed according to the components of the macroscopic shear stress, indicating that compressive failure can trigger matrix cracks and delaminations in the vicinity of the compressive failure.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, R.M. Mechanics of Composite Materials, 2nd ed.; Taylor & Francis: New York, NY, USA, 1999. [Google Scholar]
- Rosen, B.W. Mechanics of composite strengthening: Fibre composite materials. Am. Soc. Met. 1965, 72, 75. [Google Scholar]
- Chaplin, C.R. Compressive fracture in unidirectional glass-reinforced plastics. J. Mater. Sci. 1977, 12, 347–352. [Google Scholar] [CrossRef]
- Hahn, H.T.; Sohi, M.M. Buckling of a fiber bundle embedded in epoxy. Compos. Sci. Technol. 1986, 27, 25–41. [Google Scholar] [CrossRef]
- Kyriakides, S.; Arseculeratine, R.; Perry, E.J.; Liechti, K.M. On the compressive failure of fiber reinforced composites. Int. J. Solids Struct. 1995, 32, 689–738. [Google Scholar] [CrossRef]
- Moran, P.M.; Liu, X.H.; Shih, C.F. Kink band formation and band broadening in fiber composites under compressive loading. Acta Metall. Mater. 1995, 43, 2943–2958. [Google Scholar] [CrossRef]
- Jelf, P.M.; Fleck, N.A. The failure of composite tubes due to combined compression and torsion. J. Mater. Sci. 1994, 29, 3080–3084. [Google Scholar] [CrossRef]
- Effendi, R.R.; Barrau, J.J.; Degeorges, D.G. Failure mechanism analysis under compression loading of unidirectional carbon/epoxy composites using micromechanical modelling. Compos. Struct. 1995, 31, 87–98. [Google Scholar] [CrossRef]
- Sutcliffe, M.P.F.; Fleck, N.A. Microbuckle propagation in fibre composite. Acta Mater. 1997, 45, 921–932. [Google Scholar] [CrossRef]
- Barbero, E.J. Prediction of compression strength of unidirectional polymer matrix composites. J. Compos. Mater. 1998, 32, 483–502. [Google Scholar] [CrossRef]
- Fleck, N.A.; Liu, D.; Shu, J.Y. Microbuckle initiation from a hole and from the free edge of a fibre composite. Int. J. Solids Struct. 2000, 37, 2757–2775. [Google Scholar] [CrossRef]
- Yokozeki, T.; Ogasawara, T.; Ishikawa, T. Nonlinear behavior and compressive strength of unidirectional and multidirectional carbon fiber composite laminates. Compos. Part A 2006, 37, 2069–2079. [Google Scholar] [CrossRef]
- Takahashi, M.; Shirakashi, N.; Iwahori, Y.; Hara, E.; Katoh, H.; Kondo, A. Filled-hole Compressive Strength and Fracture Behavior of CFRP Laminates: Discussion by Experiments and Observations. J. Jpn. Soc. Compos. Mater. 2024, 50, 99–106. [Google Scholar] [CrossRef]
- Schultheisz, C.R.; Waas, A.M. Compressive failure of composites, Part I: Testing and micromechanical theories. Prog. Aerosp. Sci. 1996, 32, 1–42. [Google Scholar] [CrossRef]
- Budiansky, B. Compressive failure of fibre composites. J. Mech. Phys. Solids 1993, 41, 183–211. [Google Scholar] [CrossRef]
- Budiansky, B.; Fleck, N.A.; Amazigos, J.C. On kink-band propagation in fiber composites. J. Mech. Phys. Solids 1998, 46, 1637–1653. [Google Scholar] [CrossRef]
- Hsu, S.Y.; Vogler, T.J.; Kyriakides, S. Compressive strength predictions for fiber composites. J. Appl. Mech. 1998, 65, 7–16. [Google Scholar] [CrossRef]
- Soutis, C.; Curtis, P.T. A method for predicting the fracture toughness of CFRP laminates failing by fibre microbuckling. Compos. Part A 2000, 31, 733–740. [Google Scholar] [CrossRef]
- Pinho, S.T.; Davila, C.G.; Camanho, P.P.; Ianucci, L.; Robinson, P. Failure Models and Criteria for FRP Under In-Plane or Three-Dimentional Stress States Including Shear Non-Linearity; TM-2005-213530; NASA Technical Memorandum; NASA Langley Research Center: Hampton, VA, USA, 2005. [Google Scholar]
- Pinho, S.T.; Ianucci, L.; Robinson, P. Physically based models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development. Compos. Part A 2006, 37, 63–73. [Google Scholar] [CrossRef]
- Pinho, S.T.; Ianucci, L.; Robinson, P. Physically based models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part II: FE implementation. Compos. Part A 2006, 37, 766–777. [Google Scholar] [CrossRef]
- Ataabadi, A.; Toudenhky, H.H.; Rad, S.Z. Experimental and analytical study on fiber-kinking failure mode of laminated composites. Compos. Part B 2014, 61, 84–93. [Google Scholar] [CrossRef]
- Naya, F.; Herraez, M.; Lopes, C.S.; Gonzalez, C.; Van der Veen, S.; Pons, F. Computational micromechanics of fiber kinking in unidirectional FRP under different environmental conditions. Compos. Sci. Technol. 2017, 144, 26–35. [Google Scholar] [CrossRef]
- Herraez, M.; Bergan, A.C.; Lopes, C.S.; Gonzalez, C. Computational micromechanics model for the analysis of fiber kinking in unidirectional fiber-reinforced polymers. Mech. Mater. 2020, 142, 103299. [Google Scholar] [CrossRef]
- Zhang, M.; Guan, Z.; Sun, W.; Han, G. Micro-mechanical simulation of longitudinal compression in composites considering stochastic fiber strength. In Proceedings of the 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE), London, UK, 18–20 July 2016; pp. 3–8. [Google Scholar]
- Bishara, M.; Rolfes, R.; Allix, O. Revealing complex aspects of compressive failure of polymer composites—Part I: Fiber kinking at microscale. Compos. Struct. 2017, 169, 105–115. [Google Scholar] [CrossRef]
- Tojaga, V.; Skovsgaard, S.P.H.; Jensen, H.M. Micromechanics of kink band formation in open-hole fibre composites under compressive loading. Compos. Part B 2018, 149, 66–73. [Google Scholar] [CrossRef]
- Persson, E.; Eriksson, I.; Zackrisson, L. Effects of hole machining defects on strength and fatigue life of composite laminates. Compos. Part A 1997, 28, 141–151. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, X.; Lu, Y.; Duan, X. Electrical discharge-mechanical hybrid drilling of micro-holes in carbon fibre-reinforced polymers. Int. J. Mach. Tools Manuf. 2025, 205, 104243. [Google Scholar] [CrossRef]
- Bendine, K.; Gibhardt, D.; Fiedler, B.; Backs, A. Experimental characterization and mechanical behavior of 3D printed CFRP. Eur. J. Mech.—A/Solids 2022, 94, 104587. [Google Scholar] [CrossRef]
- Zeng, J.; Yan, Z.; Jiang, Y.; Li, P. 3D printing of FRP grid and bar reinforcement for reinforced concrete plates: Development and effectiveness. Compos. Struct. 2024, 335, 117946. [Google Scholar] [CrossRef]
- Nakamura, T.; Tabuchi, H.; Hirai, T.; Fujii, S.; Nakamura, Y. Effects of silane coupling agent hydrophobicity and loading method on water absorption and mechanical strength of silica particle-filled epoxy resin. J. Appl. Polym. Sci. 2020, 137, 48615. [Google Scholar] [CrossRef]
- Anatolyevich, B.P.; Yakovlevna, G.N. Generalization of the Ramberg–Osgood Model for Elastoplastic Materials. J. Mater. Eng. Perform. 2019, 28, 7342–7346. [Google Scholar] [CrossRef]
- Stormont, C.W.; Gonzalez, H.; Brinson, H.F. The ductile fracture of anisotropic materials. Exp. Mech. 1972, 12, 557–563. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L. The Finite Element Method, 4th ed.; McGraw-Hill: New York, NY, USA, 1989. [Google Scholar]
Reference # | Scale of Models | Material Nonlinearity | Interface Debonding | Kink-Band Formation | |
---|---|---|---|---|---|
Geometry | Response | ||||
[22] | Macroscopic | No | No | 2D | 2D |
[19,20,21] | Macroscopic | Yes | No | 2D | 3D * |
[25,26,27] | Microscopic | Yes | No | 3D | 2D |
[23,24] | Microscopic | Yes | Yes | 3D | 2D |
Present | Microscopic | Yes | Yes | 3D | 3D |
Fibers | Matrix | Interface | ||||||
---|---|---|---|---|---|---|---|---|
Elastic Modulus | Poisson’s Ratio | Strength σf | Elastic Modulus | Poisson’s Ratio | Yield Stress | Cohesive Energy Gc | Critical Disp. δc | Maximum Disp. δm |
230 GPa | 0.3 | 1.0, 3.0 GPa | 2.4 GPa | 0.3 | as shown in the figure | 5.0 × 10−2 kJ/m2 | 1.0 × 10−7 mm | 1.0 × 10−4 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondo, A.; Watanabe, Y.; Mikami, W.; Iwahori, Y.; Hara, E.; Katoh, H. Micromechanical Analyses on Three-Dimensional Response of Compressive Failure in Unidirectional CFRP. J. Compos. Sci. 2025, 9, 265. https://doi.org/10.3390/jcs9060265
Kondo A, Watanabe Y, Mikami W, Iwahori Y, Hara E, Katoh H. Micromechanical Analyses on Three-Dimensional Response of Compressive Failure in Unidirectional CFRP. Journal of Composites Science. 2025; 9(6):265. https://doi.org/10.3390/jcs9060265
Chicago/Turabian StyleKondo, Atsushi, Yutaro Watanabe, Wataru Mikami, Yutaka Iwahori, Eiichi Hara, and Hisaya Katoh. 2025. "Micromechanical Analyses on Three-Dimensional Response of Compressive Failure in Unidirectional CFRP" Journal of Composites Science 9, no. 6: 265. https://doi.org/10.3390/jcs9060265
APA StyleKondo, A., Watanabe, Y., Mikami, W., Iwahori, Y., Hara, E., & Katoh, H. (2025). Micromechanical Analyses on Three-Dimensional Response of Compressive Failure in Unidirectional CFRP. Journal of Composites Science, 9(6), 265. https://doi.org/10.3390/jcs9060265