Electrodeposited Composite Coatings Based on Ni Matrix Filled with Solid Lubricants: Impact of Processing Parameters on Tribological Properties and Scratch Resistance
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Determination of Current Densities
3.2. Structural Characterizations
3.3. Morphological Characterizations
3.4. Tribological Characterizations
3.5. Scratch Resistance at Optimal Conditions
4. Conclusions
- Optimal deposition conditions enabled the formation of coatings with refined microstructures and enhanced performance. Ni-G coatings exhibited a fine crystallite size (≈40 nm) and superior tribological behavior, with a reduced friction coefficient (0.710 ± 0.021) and lower wear volume compared to pure Ni and Ni-MoS2 coatings;
- Lubricant-dependent tribological behavior—Under C3, Ni–graphite coatings outperformed both pure Ni and Ni-MoS2, reducing friction and wear through the formation of a lubricating graphite-rich transfer film. Conversely, Ni-MoS2 coatings exhibited higher wear due to debris detachment and MoS2 oxidation to MoO3, which compromised its lubricating effect;
- Enhanced mechanical durability—Scratch testing under C3 conditions highlighted the Ni-G coatings’ superior adhesion and crack resistance, addressing mechanical durability challenges in abrasive environments. In contrast, Ni-MoS2 coatings showed stress-induced detachment and premature failure at higher pH levels, while pure Ni displayed moderate stability without the reinforcement benefits of graphite.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.; Kumar, M.; Tailor, S. Self-lubricating composite coatings: A review of deposition techniques and material advancement. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Zhai, F.; He, B.; Me, G. Effect of MoS2 content on anti-friction and wear-resistance of nickel-based alloy cladding layer. Ferroelectrics 2023, 607, 117–125. [Google Scholar] [CrossRef]
- Lanzutti, A.; Lekka, M.; de Leitenburg, C.; Fedrizzi, L. Effect of pulse current on wear behavior of Ni matrix micro-and nano-SiC composite coatings at room and elevated temperature. Tribol. Int. 2019, 132, 50–61. [Google Scholar] [CrossRef]
- Fre, S.C.; Wie, W.-C.J. Kinetics of electroplating process of nano sized ceramic particle/Ni composite. Mater. Chem. Phys. 2003, 78, 574. [Google Scholar]
- Li, C.; Xia, F.; Ma, C.; Li, Q. Research on the corrosion behavior of Ni-SiC nanocoating prepared using a jet electrodeposition technique. J. Mater. Eng. Perform. 2021, 30, 6336–6344. [Google Scholar] [CrossRef]
- Maharana, H.S.; Bishoyi, B.; Basu, A. Current density dependent microstructure and texture evolution and related effects on properties of electrodeposited Ni-Al coating. J. Alloys Compd. 2019, 787, 483–494. [Google Scholar] [CrossRef]
- Adabi, M.; Amadeh, A. Effect of electrodeposition conditions on properties of Ni–Al composite coatings. Surf. Eng. 2015, 31, 650–658. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, Y.; Zhang, Z. A study on the electrocodeposition processes and properties of Ni–SiC nanocomposite coatings. J. Coat. Technol. Res. 2011, 8, 409–417. [Google Scholar] [CrossRef]
- Güler, E.S.; Konca, E.; Karakaya, I. Effects of current density, coating thickness, temperature, pH and particle concentration on internal stress during Ni–MoS2 electrocodeposition. Surf. Eng. 2014, 30, 109–114. [Google Scholar] [CrossRef]
- Almonti, D.; Baiocco, G.; Della Millia, M.; Mingione, E.; Menna, E.; Rubino, G.; Salvi, D.; Stamopoulos, A.; Ucciardello, N. Morphological and functional characterization of electroplated Ni-graphene composite coatings. J. Phys. Conf. Ser. 2024, 2692, 012008. [Google Scholar] [CrossRef]
- Han, H.; Qian, Z.; Meng, F.; Cui, Z. Tribological performances of graphite–MoS2 coating at various high temperatures. Mech. Eng. Part J J. Eng. Tribol. 2019, 233, 1888–1902. [Google Scholar] [CrossRef]
- Rai, P.K.; Gupta, A. Investigation of surface characteristics and effect of electrodeposition parameters on nickel-based composite coating. Mater. Today Proc. 2021, 44, 1079–1085. [Google Scholar] [CrossRef]
- Mahidashti, Z.; Aliofkhazraei, M.; Lotfi, N. Review of nickel-based electrodeposited tribo-coatings. Trans. Indian Inst. Met. 2018, 71, 257–295. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chang, Y.Y.; Lin, C.I. Process aspects of the electrolytic codeposition of molybdenum disulfide with nickel. Electrochim. Acta 1998, 43, 315–332. [Google Scholar] [CrossRef]
- Güler İK, E.S.; Konca, E. Investigation of the tribological behaviour of electrocodeposited Ni-MoS2 composite coatings. Int. J. Surf. Sci. Eng. 2017, 11, 418–432. [Google Scholar] [CrossRef]
- Trabelsi, D.; Zouari, M.; Kharrat, M.; Dammak, M.; Eyraud, M.; Vacandio, F. Structural, micromechanical and tribological analyses of electrodeposited Nickel–graphite coatings with different fractions of graphite microparticles. Trans. Indian Inst. Met. 2018, 71, 1653–1662. [Google Scholar] [CrossRef]
- He, X.; Zhang, X.; Zhou, X.; Fu, Z. Study on electrodeposition of Ni-graphite composite coatings in sulfamate bath. Adv. Mater. Res. 2011, 150–151, 1546–1550. [Google Scholar] [CrossRef]
- Chang Sun, W.; Zhang, P.; Zhao, K.; Tian, M.; Wang, Y. Effect of graphite concentration on the friction and wear of Ni-Al2O3/graphite composite coatings by a combination of electrophoresis and electrodeposition. Wear 2015, 342–343, 172–180. [Google Scholar]
- Sajjadi, S.A.; Avazkonandeh-Gharavol, M.H.; Zebarjad, S.M.; Mohammadtaheri, M.; Abbasi, M.; Mossaddegh, K. A comparative study on the effect of type of reinforcement on the scratch behavior of a polyacrylic-based nanocomposite coating. J. Coat. Technol. Res. 2013, 10, 255–261. [Google Scholar] [CrossRef]
- MacLean, M.; Farhat, Z.; Jarjoura, G.; Fayyad, E.; Abdullah, A.; Hassan, M. Fabrication and investigation of the scratch and indentation behaviour of new generation Ni-P-nano-NiTi composite coating for oil and gas pipelines. Wear 2019, 426–427, 265–276. [Google Scholar] [CrossRef]
- Kallel, M.; Antar, Z.; Masseoud, M.; Vesco, S.; Barletta, M.; Elleuch, K. Comparative investigation of scratch resistance and tribological performance of Ni–B–TiO2 composite coatings prepared by conventional and novel processing methods. Ceram. Int. 2021, 47, 14438–14454. [Google Scholar] [CrossRef]
- Tamilarasan, T.R.; Rajendran, R.; Siva Shankar, M.; Sanjith, U.; Rajagopal, G.; Sudagar, J. Wear and scratch behaviour of electroless Ni-P-nano-TiO2: Effect of surfactants. Wear 2016, 346–347, 148–157. [Google Scholar] [CrossRef]
- Yang, H.; Zou, C.; Xu, X.; Zang, M.; Chen, S. Understanding of scratch behavior of an automotive coating system: Experiments and finite element analysis. Mater. Des. 2022, 219, 110835. [Google Scholar] [CrossRef]
- Baiocco, G.; Salvi, D.; Ucciardello, N. Optimizing Graphene Nanoplatelet Coating for Enhanced Wear Resistance on Copper Through Electrophoretic Deposition Parameters. J. Mater. Eng. Perform. 2024. [Google Scholar] [CrossRef]
- Sahari, A.; Azizi, A.; Schmerber, G.; Dinia, A. Nucleation, growth, and morphological properties of electrodeposited nickel films from different baths. Surf. Rev. Lett. 2008, 15, 717–725. [Google Scholar] [CrossRef]
- Kuo, S.-L. The influence of process parameters on the MoS2 content of Ni-MoS2 composite coating by the robust design method. J. Chin. Inst. Eng. 2004, 27, 243–251. [Google Scholar] [CrossRef]
- ASTM G133-22; Standard Test Method for Linearly Reciprocating Ball-On-Flat Sliding Wear. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- Mimani, T.; Mayanna, S.M. Influence of additives on the electrodeposition of nickel from a Watts bath: A cyclic voltammetric study. J. Appl. Electrochem. 1993, 23, 339–345. [Google Scholar] [CrossRef]
- Mendoza-Huizar, L.H.; Robles, J.; Palomar-Pardavé, M. Nucleation and growth of cobalt onto different substrates: Part I. Underpotential deposition onto a gold electrode. J. Electroanal. Chem. 2002, 521, 95–106. [Google Scholar] [CrossRef]
- Guan, T.; Zaki, S.; Haasbroek, P.D.; Mao, T.; Yu, R.; Fang, F.; Zhang, N. Precision electroforming of nickel nanocomposite mould for defects-free demoulding in polymer micro replication: Surface properties, performance validation and mould release mechanism. J. Manuf. Proc. 2023, 94, 196–213. [Google Scholar] [CrossRef]
- Jian-Min, Z.; Fei, M.; Ke-Wei, X. Calculation of the surface energy of FCC metals with modified embedded-atom method. Chin. Phys. 2004, 13, 1082. [Google Scholar] [CrossRef]
- Honciuc, A. Chemistry of Functional Materials Surfaces and Interfaces: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Wang, H.; Mo, C.; Zhou, Y.; Zhang, L. Effect of Al particle size on the microstructure and wear properties of the co-deposited Ni-Al composite coatings. Metall. Res. Technol. 2022, 119, 412. [Google Scholar] [CrossRef]
- Rasmussen, A.A.; Moller, P.; Somers, M.A.J. Microstructure and thermal stability of nickel layers electrodeposited from an additive-free sulphamate-based electrolyte. Surf. Coat. Technol. 2006, 200, 6037–6046. [Google Scholar] [CrossRef]
- Natter, H.; Krajewski, T.; Hempelmann, R. Nanocrystalline palladium by pulsed electrodeposition. Berichte Der Bunsenges. Für Phys. Chemie 1996, 100, 55–64. [Google Scholar] [CrossRef]
- Boubatra, M.; Azizi, A.; Schmerber, G.; Dinia, A. The influence of pH electrolyte on the electrochemical deposition and properties of nickel thin films. Ionics 2012, 18, 425–432. [Google Scholar] [CrossRef]
- Mishra, R.; Basu, B.; Balasubramaniam, R. Effect of grain size on the tribological behavior of nanocrystalline nickel. Mater. Sci. Eng. A 2004, 373, 370–373. [Google Scholar] [CrossRef]
- Gradt, T.; Schneider, T. Tribological performance of MoS2 coatings in various environments. Lubricants 2016, 4, 32. [Google Scholar] [CrossRef]
- He, X.; Wang, S.C.; Walsh, F.C. Self-lubricating Ni-P-MoS2 composite coatings. Surf. Coat. Technol. 2016, 307, 926–934. [Google Scholar] [CrossRef]
- Sangeetha, S.; Kalaignan, G.P. Tribological and electrochemical corrosion behavior of Ni–W/BN (hexagonal) nano-composite coatings. Ceramics Int. 2015, 41, 10415–10424. [Google Scholar] [CrossRef]
- García-Lecina, E.; García-Urrutia, I.; Díez, J.A.; Salvo, M.; Smeacetto, F.; Gautier, G.; Seddon, R.; Mar-tin, R. Electrochemical preparation and characterization of Ni/SiC composites. Electrochim. Acta 2009, 54, 2556–2562. [Google Scholar] [CrossRef]
- Farokhzadeh, K.; Edrisy, A. Transition between mild and severe wear in titanium alloys. Tribol. Int. 2015, 94, 98–111. [Google Scholar] [CrossRef]
- Srinivasan, R.; Shivananad, H.K. Studies on Tribological characterization of Carbon Nanotube reinforced with 6061 Aluminium alloy metal matrix composites coated with Nickel. Int. J. Appl. Eng. Res. 2019, 14, 3721–3729. [Google Scholar]
- Shusheng, X.; Gao, X.; Hu, M.; Sun, J.; Jiang, D.; Zhou, F.W.; Weng, L. Nanostructured WS2-Ni composite films for improved oxidation, resistance and tribological performance. Appl. Surf. Sci. 2014, 288, 15–25. [Google Scholar]
- Gajewska-Midziałek, A.; Cieślak, G.; Gostomska, M.; Ciciszwili, T.; Skroban, K.; Dąbrowski, A.; Peśko, E.; Wojda, E.; Głowacki, M.; Kapuścińska, A. Properties of Ni-B/B Composite Coatings Produced by Chemical Reduction. Coatings 2023, 13, 1535. [Google Scholar] [CrossRef]
- Li, Z.; Farhat, Z.; Jarjoura, G.; Fayyad, E.; Abdullah, A.; Hassan, M. Synthesis and Characterization of Scratch-Resistant Ni-P-Ti-Based Composite Coating. Tribol. Trans. 2019, 62, 880–896. [Google Scholar] [CrossRef]
Components Quantities | ||||||
---|---|---|---|---|---|---|
Coatings | NiSO4.6H2O (g/L) | NiCl2.6H2O (g/L) | H3BO3 (g/L) | Graphite (g/L) | MoS2 (g/L) | SDS (mg/L) |
Ni | 270 | 50 | 35 | - | - | - |
Ni-G | 270 | 50 | 35 | 1 | - | 20 |
Ni-MoS2 | 270 | 50 | 35 | - | 1 | 20 |
pH 2 | pH 3.8 | |||||
---|---|---|---|---|---|---|
Coatings | Anodic Current Quantity (Qa) | Cathodic Current Quantity (Qc) | Efficiency (%) | Anodic Current Quantity (Qa) | Cathodic Current Quantity (Qc) | Efficiency (%) |
Ni | 7.3 | −7.8 | 93 | 7.63 | −8.17 | 93 |
Ni-G | 10.1 | −11 | 91 | 5.23 | −6,15 | 85 |
Ni-MoS2 | 15.7 | −18 | 87 | 6.08 | −7.47 | 81 |
Ni | Ni-G | Ni-MoS2 | |||||||
---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C1 | C2 | C3 | C1 | C2 | C3 | |
Wear Volumes (mm3) | 0.171 ± 0.017 | 0.213 ± 0.060 | 0.158 ± 0.007 | 0.16 ± 0.02 | 0.210 ± 0.003 | 0.120 ± 0.007 | Not Available | Not Available | 0.187 ± 0.012 |
Friction Coefficients | 0.94 ± 0.02 | 0.970 ± 0.031 | 0.840 ± 0.013 | 0.77 ± 0.02 | 0.790 ± 0.014 | 0.710 ± 0.021 | Not Available | Not Available | 0.78 ± 0.04 |
pH | Current Density (mA/cm2) | |
---|---|---|
C1 | 3.8 | 25 |
C2 | 3.8 | 66 |
C3 | 2 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trabelsi, D.; Nasri, F.; Kharrat, M.; Pereira, A.; Cardoso, C.; Eyraud, M.; Dammak, M. Electrodeposited Composite Coatings Based on Ni Matrix Filled with Solid Lubricants: Impact of Processing Parameters on Tribological Properties and Scratch Resistance. J. Compos. Sci. 2025, 9, 246. https://doi.org/10.3390/jcs9050246
Trabelsi D, Nasri F, Kharrat M, Pereira A, Cardoso C, Eyraud M, Dammak M. Electrodeposited Composite Coatings Based on Ni Matrix Filled with Solid Lubricants: Impact of Processing Parameters on Tribological Properties and Scratch Resistance. Journal of Composites Science. 2025; 9(5):246. https://doi.org/10.3390/jcs9050246
Chicago/Turabian StyleTrabelsi, Dorra, Faten Nasri, Mohamed Kharrat, Antonio Pereira, César Cardoso, Marielle Eyraud, and Maher Dammak. 2025. "Electrodeposited Composite Coatings Based on Ni Matrix Filled with Solid Lubricants: Impact of Processing Parameters on Tribological Properties and Scratch Resistance" Journal of Composites Science 9, no. 5: 246. https://doi.org/10.3390/jcs9050246
APA StyleTrabelsi, D., Nasri, F., Kharrat, M., Pereira, A., Cardoso, C., Eyraud, M., & Dammak, M. (2025). Electrodeposited Composite Coatings Based on Ni Matrix Filled with Solid Lubricants: Impact of Processing Parameters on Tribological Properties and Scratch Resistance. Journal of Composites Science, 9(5), 246. https://doi.org/10.3390/jcs9050246