Tooth Allografts as Natural Biocomposite Bone Grafts: Can They Revolutionize Regenerative Dentistry?
Abstract
1. Introduction
2. Methodology
3. Tooth Grafts
3.1. Bone Autografts and Tooth Autografts
3.2. Autografts and Allografts for Bone Regeneration
3.3. Tooth Allografts
4. Tooth Banking
5. Future Directions and Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BMP | Bone Morphogenetic Protein |
DBM | Demineralised Bone Matrix |
dECM | Decellularised Extracellular Matrix |
HA | Hydroxyapatite |
HLA | Human Leukocyte Antigen |
MSC | Mesenchymal Stem Cell |
PRF | Platelet-Rich Fibrin |
SAL | Sterility Assurance Level |
SATE | Segmental Additive Tissue Engineering |
References
- Al-Rafee, M.A. The epidemiology of edentulism and the associated factors: A literature Review. J. Fam. Med. Prim. Care 2020, 9, 1841–1843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Emami, E.; de Souza, R.F.; Kabawat, M.; Feine, J.S. The impact of edentulism on oral and general health. Int. J. Dent. 2013, 2013, 498305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ciszyński, M.; Dominiak, S.; Dominiak, M.; Gedrange, T.; Hadzik, J. Allogenic Bone Graft in Dentistry: A Review of Current Trends and Developments. Int. J. Mol. Sci. 2023, 24, 16598. [Google Scholar] [CrossRef]
- Wang, W.; Yeung, K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef]
- Zhao, R.; Yang, R.; Cooper, P.R.; Khurshid, Z.; Shavandi, A.; Ratnayake, J. Bone grafts and substitutes in dentistry: A review of current trends and developments. Molecules 2021, 26, 3007. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, R.A.; Leventis, M.D.; Rohrer, M.D.; Prasad, H.S. Bone grafting: History, rationale, and selection of materials and techniques. Compend. Contin. Educ. Dent. 2014, 35, 1–6. [Google Scholar] [PubMed]
- Pankratov, A.S.; Shaikhaliev, A.I. Bone grafting in the pre-antiseptic era (historical review): Beginning of the journey. From antiquity to the 1860. Med. Hist. 2022, 6, e2022035. [Google Scholar]
- Hjørting-Hansen, E. Bone grafting to the jaws with special reference to reconstructive preprosthetic surgery. A historical review. Mund. Kiefer Gesichtschir. 2002, 6, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Donati, D.; Zolezzi, C.; Tomba, P.; Viganò, A. Bone grafting: Historical and conceptual review, starting with an old manuscript by Vittorio Putti. Acta Orthop. 2007, 78, 19–25. [Google Scholar] [CrossRef]
- Sampath, T.K.; Reddi, A.H. Discovery of bone morphogenetic proteins—A historical perspective. Bone 2020, 140, 115548. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, M.P. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. Materials 2023, 16, 4117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Inchingolo, A.M.; Patano, A.; Di Pede, C.; Inchingolo, A.D.; Palmieri, G.; de Ruvo, E.; Campanelli, M.; Buongiorno, S.; Carpentiere, V.; Piras, F.; et al. Autologous Tooth Graft: Innovative Biomaterial for Bone Regeneration. Tooth Transformer® and the Role of Microbiota in Regenerative Dentistry. A Systematic Review. J. Funct. Biomater. 2023, 14, 132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Minetti, E.; Dipalma, G.; Palermo, A.; Patano, A.; Inchingolo, A.D.; Inchingolo, A.M.; Inchingolo, F. Biomolecular Mechanisms and Case Series Study of Socket Preservation with Tooth Grafts. J. Clin. Med. 2023, 12, 5611. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, A.; Gupta, P.; Sarkar, A. APDDM mixed with i-PRF as a graft material for bone regeneration—A case report. Natl. J. Maxillofac. Surg. 2023, 14, 504–510. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Franceschelli, S.; Lagioia, R.; De Cecco, F.; Minetti, E.; Ballini, A.; Panella, V.; Speranza, L.; Grilli, A.; Mastrangelo, F. Biological Evaluation of the Osteoinductive Potential of Dry Teeth after Chemical Demineralization Treatment Using the Tooth Transformer Device. Biomolecules 2023, 13, 1727. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sultana, N.; Cole, A.; Strachan, F. Biocomposite Scaffolds for Tissue Engineering: Materials, Fabrication Techniques and Future Directions. Materials 2024, 17, 5577. [Google Scholar] [CrossRef] [PubMed]
- Ielo, I.; Calabrese, G.; De Luca, G.; Conoci, S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int. J. Mol. Sci. 2022, 23, 9721. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, D.; Lee, H.; Lee, G.H.; Hoang, T.H.; Kim, H.R.; Kim, G.H. Fabrication of bone-derived decellularized extracellular matrix/ceramic-based biocomposites and their osteo/odontogenic differentiation ability for dentin regeneration. Bioeng. Transl. Med. 2022, 7, e10317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.-K.; Murugan, S.S.; Dalavi, P.A.; Gupta, S.; Anil, S.; Seong, G.H.; Venkatesan, J. Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration. Beilstein J. Nanotechnol. 2022, 13, 1051–1067. [Google Scholar] [CrossRef]
- Minetti, E.; Taschieri, S.; Berardini, M.; Corbella, S. New Classification of Autologous Tooth-Derived Grafting Materials: Fundamental Concepts. Int. J. Dent. 2025, 2025, 6646405. [Google Scholar] [CrossRef]
- Kwack, K.H.; Lee, H.W. Clinical potential of dental pulp stem cells in pulp regeneration: Current endodontic progress and future perspectives. Front. Cell Dev. Biol. 2022, 10, 857066. [Google Scholar] [CrossRef]
- Bengtsson, M. How to plan and perform a qualitative study using content analysis. NursingPlus Open 2016, 2, 8–14. [Google Scholar] [CrossRef]
- Janicki, P.; Schmidmaier, G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury Int. J. Care Inj. 2011, 42, 77–81. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Qi, Y.; Ma, X.; Qiao, S.; Cai, H.; Zhao, B.C.; Jiang, H.B.; Lee, E.-S. Comparison of autogenous tooth materials and other bone grafts. Tissue Eng. Regen. Med. 2021, 18, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, A.; Wilde, F.; Heufelder, M.; Winter, K.; Schramm, A. Autogenous bone grafts in oral implantology—Is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int. J. Implant Dent. 2017, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Nkenke, E.; Neukam, F.W. Autogenous bone harvesting and grafting in advanced jaw resorption: Morbidity, resorption and implant survival. Eur. J. Oral Implantol. 2014, 7, 203–217. [Google Scholar]
- Stelzle, F.; Frenkel, C.; Riemann, M.; Knipfer, C.; Stockmann, P.; Nkenke, E. The effect of load on heat production, thermal effects and expenditure of time during implant site preparation—An experimental ex vivo comparison between piezosurgery and conventional drilling. Clin. Oral Implants Res. 2014, 25, e140–8. [Google Scholar] [CrossRef]
- Widmark, G.; Andersson, B.; Ivanoff, C.J. Mandibular bone graft in the anterior maxilla for single-tooth implants. Presentation of surgical method. Int. J. Oral Maxillofac. Surg. 1997, 26, 106–109. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Kim, S.-G.; Byeon, J.-H.; Lee, H.-J.; Um, I.-U.; Lim, S.-C.; Kim, S.-Y. Development of a novel bone grafting material using autogenous teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 496–503. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Lee, J.; Um, I.-W.; Kim, K.-W.; Murata, M.; Akazawa, T.; Mitsugi, M. Tooth-derived bone graft material. J. Korean Assoc. Oral Maxillofac. Surg. 2013, 39, 103–111. [Google Scholar] [CrossRef]
- Yeomans, J.D.; Urist, M.R. Bone induction by decalcified dentine implanted into oral, osseous and muscle tissues. Arch. Oral Biol. 1967, 12, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Akazawa, T.; Mitsugi, M.; Um, I.W.; Kim, Y.K. Human Dentin as Novel Biomaterial for Bone Regeneration. In Biomaterials—Physics and Chemistry; Pignatello, R., Ed.; Intechopen: London, UK, 2011; p. 504. [Google Scholar] [CrossRef]
- Qin, X.; Raj, R.M.; Liao, X.; Shi, W.; Ma, B.; Gong, S.; Chen, W.; Zhou, B. Using rigidly fixed autogenous tooth graft to repair bone defect: An animal model. Dent. Traumatol. 2014, 30, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Hazar, D.; Becker, K.; Sader, R.; Becker, J. Efficacy of autogenous tooth roots for lateral alveolar ridge augmentation and staged implant placement. A prospective controlled clinical study. J. Clin. Periodontol. 2018, 45, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Koga, T.; Minamizato, T.; Kawai, Y.; Miura, K.-I.; Takashi, I.; Nakatani, Y.; Sumita, Y.; Asahina, I. Bone Regeneration Using Dentin Matrix Depends on the Degree of Demineralization and Particle Size. PLoS ONE 2016, 11, e0147235. [Google Scholar] [CrossRef]
- Bono, N.; Tarsini, P.; Candiani, G. Demineralized Dentin and Enamel Matrices as Suitable Substrates for Bone Regeneration. J. Appl. Biomater. Funct. Mater. 2017, 15, 236–243. [Google Scholar] [CrossRef]
- Minetti, E.; Corbella, S.; Taschieri, S.; Canullo, L. Tooth as graft material: Histologic study. Clin. Implant. Dent. Relat. Res. 2022, 24, 488–496. [Google Scholar] [CrossRef]
- Korsch, M.; Peichl, M. Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique. Int. J. Environ. Res. Public Health 2021, 18, 3174. [Google Scholar] [CrossRef]
- Jun, S.-H.; Ahn, J.-S.; Lee, J.-I.; Ahn, K.-J.; Yun, P.-Y.; Kim, Y.-K. A prospective study on the effectiveness of newly developed autogenous tooth bone graft material for sinus bone graft procedure. J. Adv. Prosthodont. 2014, 6, 528–538. [Google Scholar] [CrossRef]
- Okubo, N.; Ishikawa, M.; Shakya, M.; Hosono, H.; Maehara, O.; Ohkawara, T.; Ohnishi, S.; Akazawa, T.; Murata, M. Autograft of Demineralized Dentin Matrix Prepared Immediately after Extraction for Horizontal Bone Augmentation of the Anterior Atrophic Maxilla: A First Case of Non-Vital Tooth-Derived Dentin. J. Hard Tissue Biol. 2022, 31, 47–54. [Google Scholar] [CrossRef]
- Park, M.; Mah, Y.-J.; Kim, D.-H.; Kim, E.-S.; Park, E.-J. Demineralized deciduous tooth as a source of bone graft material: Its biological and physicochemical characteristics. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 120, 307–314. [Google Scholar] [CrossRef]
- Umebayashi, M.; Ohba, S.; Kurogi, T.; Noda, S.; Asahina, I. Full Regeneration of Maxillary Alveolar Bone Using Autogenous Partially Demineralized Dentin Matrix and Particulate Cancellous Bone and Marrow for Implant-Supported Full Arch Rehabilitation. J. Oral Implantol. 2020, 46, 122–127. [Google Scholar] [CrossRef]
- Kadkhodazadeh, M.; Fathiazar, A.; Yadegari, Z.; Amid, R. Comparison of osteopromoting ability of human tooth powder with the demineralized freeze-dried bone allograft, a bovine xenograft, and a synthetic graft: An in vitro study. J. Adv. Periodontol. Implant Dent. 2020, 12, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Cervera-Maillo, J.M.; Morales-Schwarz, D.; Morales-Melendez, H.; Mahesh, L.; Calvo-Guirado, J.L. Autologous Tooth Dentin Graft: A Retrospective Study in Humans. Medicina 2021, 58, 56. [Google Scholar] [CrossRef] [PubMed]
- Movaniya, P.; Chhatbar, R.; Bhatt, S.; Sing, N.J.; Arya, A.; Parmar, H. Comparison of Osteoinductive Potential of Autografts vs. Allografts in Mandibular Defect Models. J. Pharm. Bioallied Sci. 2025, 17, S1399–S1401. [Google Scholar] [CrossRef] [PubMed]
- Piattelli, A.; Scarano, A.; Corigliano, M.; Piattelli, M. Comparison of bone regeneration with the use of mineralized and demineralized freeze-dried bone allografts: A histological and histochemical study in man. Biomaterials 1996, 17, 1127–1131. [Google Scholar] [CrossRef]
- Eppley, B.L.; Pietrzak, W.S.; Blanton, M.W. Allograft and alloplastic bone substitutes: A review of science and technology for the craniomaxillofacial surgeon. J. Craniofacial Surg. 2005, 16, 981–989. [Google Scholar] [CrossRef]
- Solakoglu, Ö.; Götz, W.; von Baehr, V.; Heydecke, G.; Pantel, K.; Schwarzenbach, H. Characterization of immunologically detectable T-cell sensitization, Immunohistochemical detection of pro-inflammatory cytokines, and clinical parameters of patients after allogeneic intraoral bone grafting procedures: A prospective randomized controlled clinical trial in humans. BMC Oral Health 2022, 22, 592. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeitlin, B.D. Banking on teeth–Stem cells and the dental office. Biomed. J. 2020, 43, 124–133. [Google Scholar] [CrossRef]
- Vangsness, C.T., Jr. (Ed.) Allografts: Graft Sterilization and Tissue Banking Safety Issues Graft Sterilization and Tissue Banking Safety Issues. In Noyes’ Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes; Elsevier: Amsterdam, The Netherlands, 2010; pp. 240–244. [Google Scholar] [CrossRef]
- Walsh, P.J.; Fee, K.; Clarke, S.A.; Julius, M.L.; Buchanan, F.J. Blueprints for the next generation of bioinspired and biomimetic mineralised composites for bone regeneration. Mar. Drugs 2018, 16, 288. [Google Scholar] [CrossRef]
- Palati, S.; Ganapathy, D.; Sekaran, S. Whitlockite as a next-generation biomaterial for bone regeneration: A systematic review of In Vivo evidence for bone regeneration. J. Oral Biol. Craniofacial Res. 2025, 15, 1176–1182. [Google Scholar] [CrossRef]
- Steijvers, E.; Ghei, A.; Xia, Z. Manufacturing artificial bone allografts: A perspective. Biomater. Transl. 2022, 3, 65–80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, W.; Zhou, C.; Liu, X.; Xie, Q.; Xia, L.; Liu, L.; Bao, W.; Lin, H.; Xiong, X.; Zhang, H.; et al. Current status of nano-embedded growth factors and stem cells delivery to bone for targeted repair and regeneration. J. Orthop. Transl. 2025, 50, 257–273. [Google Scholar] [CrossRef]
- Liu, L.; Chen, H.; Zhao, X.; Han, Q.; Xu, Y.; Liu, Y.; Zhang, A.; Li, Y.; Zhang, W.; Chen, B.; et al. Advances in the application and research of biomaterials in promoting bone repair and regeneration through immune modulation. Mater. Today Bio 2025, 30, 101410. [Google Scholar] [CrossRef] [PubMed]
- Emon, N.U.; Zhang, L.; Osborne, S.D.; Lanoue, M.A.; Huang, Y.; Tian, Z.R. Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration. Nanomaterials 2025, 15, 1198. [Google Scholar] [CrossRef] [PubMed]
- Giesenhagen, B.; Martin, N.; Jung, O.; Barbeck, M. Bone augmentation and simultaneous implant placement with allogenic bone rings and analysis of its purification success. Materials 2019, 12, 1291. [Google Scholar] [CrossRef]
- de Carvalho, A.B.G.; Rahimnejad, M.; Oliveira, R.L.M.S.; Sikder, P.; Saavedra, G.S.F.A.; Bhaduri, S.B.; Gawlitta, D.; Malda, J.; Kaigler, D.; Trichês, E.S.; et al. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int. J. Oral Sci. 2024, 16, 62. [Google Scholar] [CrossRef]
- MaxiBone: Creating Personalized Bone Regeneration by Using Stem Cells. Available online: https://tissueengineering.no/maxibone-projects/ (accessed on 29 September 2025).
Graft Type | Source | Key Features |
---|---|---|
Alloplast (synthetic) | Lab-made materials (e.g., calcium phosphate, hydroxyapatite) |
|
Autograft | Patient’s own bone or tooth (e.g., bone taken from chin, hip, jaw) |
|
Allograft | Human donor bone or tooth (Usually cadaveric) |
|
Xenograft | Animal bone or tooth (e.g., from bovine, porcine, or camel teeth) |
|
Growth and Differentiation Factors | Biologically active proteins (e.g., Bone Morphogenetic Proteins) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singhal, I.; Tartaglia, G.M.; Panda, S.; Herguner Siso, S.; Inchingolo, A.M.; Del Fabbro, M.; Goker, F. Tooth Allografts as Natural Biocomposite Bone Grafts: Can They Revolutionize Regenerative Dentistry? J. Compos. Sci. 2025, 9, 550. https://doi.org/10.3390/jcs9100550
Singhal I, Tartaglia GM, Panda S, Herguner Siso S, Inchingolo AM, Del Fabbro M, Goker F. Tooth Allografts as Natural Biocomposite Bone Grafts: Can They Revolutionize Regenerative Dentistry? Journal of Composites Science. 2025; 9(10):550. https://doi.org/10.3390/jcs9100550
Chicago/Turabian StyleSinghal, Ishita, Gianluca Martino Tartaglia, Sourav Panda, Seyda Herguner Siso, Angelo Michele Inchingolo, Massimo Del Fabbro, and Funda Goker. 2025. "Tooth Allografts as Natural Biocomposite Bone Grafts: Can They Revolutionize Regenerative Dentistry?" Journal of Composites Science 9, no. 10: 550. https://doi.org/10.3390/jcs9100550
APA StyleSinghal, I., Tartaglia, G. M., Panda, S., Herguner Siso, S., Inchingolo, A. M., Del Fabbro, M., & Goker, F. (2025). Tooth Allografts as Natural Biocomposite Bone Grafts: Can They Revolutionize Regenerative Dentistry? Journal of Composites Science, 9(10), 550. https://doi.org/10.3390/jcs9100550