Process–Property Correlation in Sustainable Printing Extrusion of Bio-Based Filaments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization Techniques
2.3.1. Sample Size Measurements
2.3.2. Dynamic Mechanical Analysis (DMA)
2.3.3. Spectroscopic Measurements
2.3.4. Visual Analysis of the Sample Surface
3. Results
3.1. Accuracy in Sample Sizes
3.2. Dynamic Mechanical Analysis (DMA)
3.3. Spectroscopic Analyses
3.4. Visual Aspects of Sample Surfaces
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prashar, G.; Vasudev, H.; Bhuddhi, D. Additive manufacturing: Expanding 3D printing horizon in industry 4.0. Int. J. Interact. Des. Manuf. 2023, 17, 2221–2235. [Google Scholar] [CrossRef]
- Di Nardo, M.D.; Forino, D.; Murino, T. The evolution of man–machine interaction: The role of human in Industry 4.0 paradigm. Prod. Manuf. Res. 2020, 8, 20–34. [Google Scholar] [CrossRef]
- Koh, L.; Orzes, G.; Jia, F. The fourth industrial revolution (Industry 4.0): Technologies disruption on operations and supply chain management. Int. J. Oper. Prod. Manag. 2019, 39, 817–828. [Google Scholar] [CrossRef]
- Oláh, J.; Aburumman, N.; Popp, J.; Khan, M.A.; Haddad, H.; Kitukutha, N. Impact of Industry 4.0 on Environmental Sustainability. Sustainability 2020, 12, 4674. [Google Scholar] [CrossRef]
- Tavares-Lehmann, A.T.; Varum, C. Industry 4.0 and sustainability: A bibliometric literature review. Sustainability 2021, 13, 3493. [Google Scholar] [CrossRef]
- Acierno, D.; Patti, A. Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties—An Overview. Materials 2023, 16, 7664. [Google Scholar] [CrossRef]
- Mishra, P.K.; Jagadesh, T. Applications and Challenges of 3D Printed Polymer Composites in the Emerging Domain of Automotive and Aerospace: A Converged Review. J. Inst. Eng. Ser. D 2023, 104, 849–866. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Rastogi, V.; Ginn, M. A review on 3D printing techniques for medical applications. Curr. Opin. Chem. Eng. 2020, 28, 152–157. [Google Scholar] [CrossRef]
- Sitotaw, D.B.; Ahrendt, D.; Kyosev, Y.; Kabish, A.K. Additive Manufacturing and Textiles—State-of-the-Art. Appl. Sci. 2020, 10, 5033. [Google Scholar] [CrossRef]
- Dizon, J.R.C.; Gache, C.C.L.; Cascolan, H.M.S.; Cancino, L.T.; Advincula, R.C. Post-Processing of 3D-Printed Polymers. Technologies 2021, 9, 61. [Google Scholar] [CrossRef]
- Solomon, I.J.; Sevvel, P.; Gunasekaran, J. A review on the various processing parameters in FDM. Mater. Today Proc. 2021, 37, 509–514. [Google Scholar] [CrossRef]
- Patti, A. Challenges to Improve Extrusion-based Additive Manufacturing Process of Thermoplastics Towards Sustainable Development. Macromol. Rapid Commun. 2024. [Google Scholar] [CrossRef]
- Bhagia, S.; Bornani, K.; Agarwal, R.; Satlewal, A.; Ďurkovič, J.; Lagaňa, R.; Bhagia, M.; Yoo, C.G.; Zhao, X.; Kunc, V.; et al. Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl. Mater. Today 2021, 24, 101078. [Google Scholar] [CrossRef]
- D’Arienzo, L.; Acierno, S.; Patti, A.; Di Maio, L. Cellulose/Polyhydroxybutyrate (PHB) Composites as a Sustainable Bio-Based Feedstock to 3D-Printing Applications. Materials 2024, 17, 916. [Google Scholar] [CrossRef] [PubMed]
- Mehrpouya, M.; Vahabi, H.; Barletta, M.; Laheurte, P.; Langlois, V. Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: Materials, printing techniques, and applications. Mater. Sci. Eng. C 2021, 127, 112216. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Shi, J.; Li, M.; Lei, W.; Yu, W. FDM 3D Printing and Soil-Burial-Degradation Behaviors of Residue of Astragalus Particles/Thermoplastic Starch/Poly(lactic acid) Biocomposites. Polymers 2023, 15, 2382. [Google Scholar] [CrossRef] [PubMed]
- Sciancalepore, C.; Togliatti, E.; Marozzi, M.; Rizzi, F.M.A.; Pugliese, D.; Cavazza, A.; Pitirollo, O.; Grimaldi, M.; Milanese, D. Flexible PBAT-Based Composite Filaments for Tunable FDM 3D Printing. ACS Appl. Bio Mater. 2022, 5, 3219–3229. [Google Scholar] [CrossRef] [PubMed]
- Patti, A.; Acierno, S.; Cicala, G.; Acierno, D. Aging effects on the viscoelastic behaviour of products by fused deposition modelling (FDM) made from recycled and wood-filled polymer resins. Eur. J. Wood Wood Prod. 2024, 82, 69–79. [Google Scholar] [CrossRef]
- Han, S.N.M.F.; Taha, M.M.; Mansor, M.R.; Rahman, M.A.A. Investigation of tensile and flexural properties of kenaf fiber-reinforced acrylonitrile butadiene styrene composites fabricated by fused deposition modeling. J. Eng. Appl. Sci. 2022, 69, 52. [Google Scholar] [CrossRef]
- Milosevic, M.; Stoof, D.; Pickering, K.L. Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites. J. Compos. Sci. 2017, 1, 7. [Google Scholar] [CrossRef]
- Lodha, S.; Song, B.; Park, S.I.; Choi, H.J.; Lee, S.W.; Park, H.W.; Choi, S.K. Sustainable 3D printing with recycled materials: A review. J. Mech. Sci. Technol. 2023, 37, 5481–5507. [Google Scholar] [CrossRef]
- Rigon, D.; Ricotta, M.; Meneghetti, G. A literature survey on structural integrity of 3D printed virgin and recycled ABS and PP compounds. Procedia Struct. Integr. 2020, 28, 1655–1663. [Google Scholar] [CrossRef]
- Hasan, M.R.; Davies, I.J.; Pramanik, A.; John, M.; Biswas, W.K. Potential of recycled PLA in 3D printing: A review. Sustain. Manuf. Serv. Econ. 2024, 3, 100020. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, S.; Cicala, G.; Zarrelli, M.; Acierno, D. Recovery of Waste Material from Biobags: 3D Printing Process and Thermo-Mechanical Characteristics in Comparison to Virgin and Composite Matrices. Polymers 2022, 14, 1943. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.R.; Lee, W.J.; Spurgeon, B.E.; Boor, B.E.; Zhao, F. An Experimental Study on the Energy Consumption and Emission Profile of Fused Deposition Modeling Process. Procedia Manuf. 2018, 26, 920–928. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, S.; Cicala, G.; Zarrelli, M.; Acierno, D. The Understanding the Processing Window of Virgin and Recycled Bio-based Filaments for 3D Printing Applications. Macromol. Symp. 2022, 405, 2100291. [Google Scholar] [CrossRef]
- Spoerk, M.; Gonzalez-Gutierrez, J.; Sapkota, J.; Schuschnigg, S.; Holzer, C. Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication. Plast. Rubber Compos. 2017, 47, 17–24. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, S.; Cicala, G.; Acierno, D. Predicting the Printability of Poly(Lactide) Acid Filaments in Fused Deposition Modeling (FDM) Technology: Rheological Measurements and Experimental Evidence. ChemEngineering 2022, 7, 1. [Google Scholar] [CrossRef]
- Henriques, I.R.; Borges, L.A.; Costa, M.F.; Soares, B.G.; Castello, D.A. Comparisons of complex modulus provided by different DMA. Polym. Test. 2018, 72, 394–406. [Google Scholar] [CrossRef]
- Narducci, R.; Chailan, J.F.; Fahs, A.; Pasquini, L.; Di Vona, M.L.; Knauth, P. Mechanical properties of anion exchange membranes by combination of tensile stress–strain tests and dynamic mechanical analysis. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1180–1187. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.T. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 2016, 106, 149–159. [Google Scholar] [CrossRef]
- Carrasco, F.; Pagès, P.; Gámez-Pérez, J.; Santana, O.O.; Maspoch, M.L. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 2010, 95, 116–125. [Google Scholar] [CrossRef]
- Wang, Y.; Steinhoff, B.; Brinkmann, C.; Alig, I. In-line monitoring of the thermal degradation of poly(l-lactic acid) during melt extrusion by UV–vis spectroscopy. Polymer 2008, 49, 1257–1265. [Google Scholar] [CrossRef]
- Ferrari, R.; Pecoraro, C.M.; Storti, G.; Moscatelli, D. A green route to synthesize poly(lactic acid)-based macromonomers in scCO2 for biodegradable nanoparticle production. RSC Adv. 2014, 4, 12795–12804. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97, 1898–1914. [Google Scholar] [CrossRef]
- Tsai, J.C.; Lo, Y.L.; Lin, C.Y.; Sheu, H.M.; Lin, J.C. Feasibility of rapid quantitation of stratum corneum lipid content by Fourier transform infrared spectrometry. J. Spectrosc. 2004, 18, 423–431. [Google Scholar] [CrossRef]
- Zharylkassyn, B.; Perveen, A.; Talamona, D. Effect of process parameters and materials on the dimensional accuracy of FDM parts. Mater. Today Proc. 2021, 44, 1307–1311. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Domínguez-Fernández, A.; Durán-Llucià, R. Influence of Print Orientation on Surface Roughness in Fused Deposition Modeling (FDM) Processes. Materials 2019, 12, 3834. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.A.; Kamil, M. Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Mater. Today Proc. 2021, 45, 5462–5468. [Google Scholar] [CrossRef]
- Alafaghani, A.; Qattawi, A.; Alrawi, B.; Guzman, A. Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manuf. 2017, 10, 791–803. [Google Scholar] [CrossRef]
- de Freitas, F.; Pegado, H. Impact of nozzle temperature on dimensional and mechanical characteristics of low-density PLA. Int. J. Adv. Manuf. Technol. 2023, 126, 1629–1638. [Google Scholar] [CrossRef]
- Alsoufi, M.S.; Alhazmi, M.W.; Suker, D.K.; Alghamdi, T.A.; Sabbagh, R.A.; Felemban, M.A.; Bazuhair, F.K. Experimental Characterization of the Influence of Nozzle Temperature in FDM 3D Printed Pure PLA and Advanced PLA+. Am. J. Mech. Eng. 2019, 7, 45–60. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Y.; Deng, Z.; Zhang, S.; Cai, J. Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polym. Test. 2020, 86, 106483. [Google Scholar] [CrossRef]
- Dou, H.; Cheng, Y.; Ye, W.; Zhang, D.; Li, J.; Miao, Z.; Rudykh, S. Effect of Process Parameters on Tensile Mechanical Properties of 3D Printing Continuous Carbon Fiber-Reinforced PLA Composites. Materials 2020, 13, 3850. [Google Scholar] [CrossRef] [PubMed]
- Rezaeian, P.; Ayatollahi, M.R.; Nabavi-Kivi, A.; Razavi, N. Effect of printing speed on tensile and fracture behavior of ABS specimens produced by fused deposition modeling. Eng. Fract. Mech. 2022, 266, 108393. [Google Scholar] [CrossRef]
- Wang, P.; Zou, B.; Xiao, H.; Ding, S.; Huang, C. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J. Mater. Process. Technol. 2019, 271, 62–74. [Google Scholar] [CrossRef]
Printing Speed | Nozzle Temperature | Printing Time | |
---|---|---|---|
n-PLA | f-PLA | ||
70 mm/s | 200 °C; 210 °C; 220 °C | 67 min | 46 min |
85 mm/s | 200 °C; 210 °C; 220 °C | 58 min | 41 min |
100 mm/s | 200 °C; 210 °C; 220 °C | 52 min | 36 min |
115 1 mm/s | 200 °C; 210 °C; 220 °C | 48 min | 34 min |
130 mm/s | 210 °C; 220 °C | 44 min | 31 min |
n-PLA | ||||||
---|---|---|---|---|---|---|
T(mm) | W (mm) | L (mm) | T Errors (mm) | W Errors (mm) | L Errors (mm) | |
T = 200 °C | ||||||
70 mm/s | 2.35 ± 0.02 | 4.86 ± 0.01 | 24.81 ± 0.00 | 0.37 ± 0.04 | −0.14 ± 0.03 | −0.19 ± 0.06 |
85 mm/s | 2.19 ± 0.15 | 4.87 ± 0.00 | 24.83 ± 0.00 | 0.20 ± 0.10 | −0.13 ± 0.05 | −0.16 ± 0.06 |
100 mm/s | 2.31 ± 0.11 | 4.86 ± 0.00 | 24.80 ± 0.00 | 0.31 ± 0.11 | −0.14 ± 0.01 | −0.20 ± 0.03 |
115 mm/s | 2.10 ± 0.02 | 4.77 ± 0.05 | 24.75 ± 0.00 | 0.12 ± 0.04 | −0.22 ± 0.03 | −0.24 ± 0.01 |
130 mm/s | / | / | / | / | / | / |
T = 210 °C | ||||||
70 mm/s | 2.57 ± 0.08 | 4.87 ± 0.02 | 25.17 ± 0.05 | 0.57 ± 0.08 | −0.13 ± 0.02 | 0.17 ± 0.05 |
85 mm/s | 2.10 ± 0.03 | 4.90 ± 0.05 | 24.86 ± 0.05 | 0.09 ± 0.03 | −0.10 ± 0.05 | −0.13 ± 0.05 |
100 mm/s | 2.34 ± 0.12 | 4.87 ± 0.07 | 25.05 ± 0.06 | 0.34 ± 0.12 | −0.12 ± 0.07 | 0.05 ± 0.05 |
115 mm/s | 2.42 ± 0.04 | 4.83 ± 0.02 | 24.80 ± 0.02 | 0.41 ± 0.04 | −0.17 ± 0.02 | −0.20 ± 0.02 |
130 mm/s | 2.15 ± 0.03 | 4.75 ± 0.03 | 24.78 ± 0.05 | 0.15 ± 0.03 | −0.24 ± 0.03 | −0.21 ± 0.05 |
T = 220 °C | ||||||
70 mm/s | 2.41 ± 0.25 | 5.21 ± 0.04 | 25.20 ± 0.07 | 0.41 ± 0.25 | 0.21 ± 0.04 | 0.20 ± 0.07 |
85 mm/s | 2.41 ± 0.08 | 5.19 ± 0.02 | 25.18 ± 0.04 | 0.41 ± 0.08 | 0.19 ± 0.02 | 0.19 ± 0.02 |
100 mm/s | 2.48 ± 0.05 | 5.06 ± 0.08 | 24.83 ± 0.04 | 0.48 ± 0.05 | 0.06 ± 0.08 | −0.17 ± 0.04 |
115 mm/s | 2.30 ± 0.10 | 4.99 ± 0.08 | 24.82 ± 0.03 | 0.30 ± 0.10 | −0.01 ± 0.08 | −0.17 ± 0.03 |
130 mm/s | 2.27 ± 0.05 | 4.86 ± 0.06 | 24.83 ± 0.04 | 0.27 ± 0.05 | −0.13 ± 0.06 | −0.17 ± 0.04 |
f-PLA | ||||||
---|---|---|---|---|---|---|
T(mm) | W (mm) | L (mm) | T Errors (mm) | W Errors (mm) | L Errors (mm) | |
T = 200 °C | ||||||
70 mm/s | 2.15 ± 0.14 | 5.14 ± 0.00 | 25.29 ± 0.06 | 0.15 ± 0.10 | 0.11 ± 0.05 | 0.32 ± 0.06 |
85 mm/s | 2.19 ± 0.08 | 5.21 ± 0.02 | 25.31 ± 0.00 | 0.12 ± 0.12 | 0.21 ± 0.01 | 0.32 ± 0.02 |
100 mm/s | 2.41 ± 0.06 | 5.22 ± 0.03 | 25.34 ± 0.04 | 0.36 ± 0.09 | 0.25 ± 0.05 | 0.35 ± 0.04 |
115 mm/s | 2.09 ± 0.18 | 5.11 ± 0.07 | 25.29 ± 0.07 | 0.12 ± 0.13 | 0.11 ± 0.00 | 0.27 ± 0.07 |
130 mm/s | / | / | / | / | / | / |
T = 210 °C | ||||||
70 mm/s | 2.48 ± 0.17 | 5.19 ± 0.06 | 25.24 ± 0.03 | 0.48 ± 0.17 | 0.19 ± 0.06 | 0.24 ± 0.03 |
85 mm/s | 2.26 ± 0.00 | 5.11 ± 0.05 | 25.23 ± 0.03 | 0.26 ± 0.00 | 0.11 ± 0.05 | 0.23 ± 0.03 |
100 mm/s | 2.25 ± 0.05 | 5.25 ± 0.00 | 25.31 ± 0.08 | 0.25 ± 0.05 | 0.25 ± 0.05 | 0.31 ± 0.08 |
115 mm/s | 2.19 ± 0.03 | 5.05 ± 0.03 | 25.33 ± 0.01 | 0.19 ± 0.03 | 0.06 ± 0.03 | 0.33 ± 0.01 |
130 mm/s | 2.25 ± 0.09 | 5.10 ± 0.07 | 25.06 ± 0.12 | 0.25 ± 0.09 | 0.10 ± 0.07 | 0.06 ± 0.13 |
T = 220 °C | ||||||
70 mm/s | 1.99 ± 0.04 | 5.05 ± 0.10 | 25.06 ± 0.10 | −0.01 ± 0.04 | 0.06 ± 0.10 | 0.06 ± 0.10 |
85 mm/s | 2.18 ± 0.10 | 5.06 ± 0.09 | 25.10 ± 0.11 | 0.18 ± 0.10 | 0.06 ± 0.10 | 0.10 ± 0.11 |
100 mm/s | 2.21 ± 0.09 | 5.02 ± 0.08 | 25.10 ± 0.11 | 0.21 ± 0.09 | 0.02 ± 0.08 | 0.10 ± 0.11 |
115 mm/s | 2.16 ± 0.09 | 4.97 ± 0.02 | 25.06 ± 0.07 | 0.16 ± 0.09 | −0.03 ± 0.01 | 0.05 ± 0.03 |
130 mm/s | 2.20 ± 0.06 | 4.95 ± 0.07 | 25.05 ± 0.03 | 0.20 ± 0.06 | −0.05 ± 0.07 | 0.05 ± 0.03 |
Nozzle Temperature | Printing Speed | n-PLA | f-PLA |
---|---|---|---|
200 °C | 70 mm/s | 60.1 ± 0.4 | 59.8 ± 0.6 |
85 mm/s | 59.4 ± 0.4 | 60.2 ± 0.2 | |
100 mm/s | 60.0 ± 0.2 | 59.1 ± 0.2 | |
115 mm/s | 60.0 ± 0.3 | 59.8 ± 0.6 | |
210 °C | 70 mm/s | 60.3 ± 0.2 | 59.8 ± 0.4 |
85 mm/s | 59.8 ± 1.2 | 60.1 ± 0.1 | |
100 mm/s | 59.7 ± 0.7 | 59.8 ± 0.5 | |
115 mm/s | 59.5 ± 1.3 | 59.6 ± 0.2 | |
130 mm/s | 59.4 ± 0.3 | 59.3 ± 0.1 | |
220 °C | 70 mm/s | 58.9 ± 0.3 | 59.8 ± 0.6 |
85 mm/s | 58.7 ± 0.2 | 59.6 ± 0.2 | |
100 mm/s | 58.3 ± 1.5 | 59.2 ± 0.3 | |
115 mm/s | 58.4 ± 1.3 | 59.3 ± 0.1 | |
130 mm/s | 58.7 ± 1.6 | 59.9 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patti, A. Process–Property Correlation in Sustainable Printing Extrusion of Bio-Based Filaments. J. Compos. Sci. 2024, 8, 305. https://doi.org/10.3390/jcs8080305
Patti A. Process–Property Correlation in Sustainable Printing Extrusion of Bio-Based Filaments. Journal of Composites Science. 2024; 8(8):305. https://doi.org/10.3390/jcs8080305
Chicago/Turabian StylePatti, Antonella. 2024. "Process–Property Correlation in Sustainable Printing Extrusion of Bio-Based Filaments" Journal of Composites Science 8, no. 8: 305. https://doi.org/10.3390/jcs8080305
APA StylePatti, A. (2024). Process–Property Correlation in Sustainable Printing Extrusion of Bio-Based Filaments. Journal of Composites Science, 8(8), 305. https://doi.org/10.3390/jcs8080305