Investigation of the Physico-Chemical and Mechanical Properties of Expanded Ceramsite Granules Made on the Basis of Coal Mining Waste
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- -
- There is an influence of internal mineral rocks from coal mining in the amount of 1.0–10.0% on the physico-chemical properties of expanded clay.
- -
- The minerals of calcium and magnesium contained in the charge and the organic part of the coal residue act as a fluxing additive, which leads to the hardening of the granules.
- -
- At the same time as the porosity of the granules decreases, the size of the internal pores increases, empty cavities form, the surface of the expanded clay granules melts, and the compressive strength decreases.
- -
- The recommended amount of waste in expanded clay is 4.0–6.0%.
- -
- The effective firing temperature is 1150 °C.
- -
- It is possible to obtain samples of expanded clay granules with a bulk density of 0.337–0.348 t/m3 and a compressive strength of 1.37–1.51 MPa, which comply with GOST 32496-2013 (GOST 9757-90) and mark P50 with a volumetric density of 350–400 [68].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ardakani, A.; Yazdani, M. The relation between particle density and static elastic moduli of lightweight expanded clay aggregates. Appl. Clay Sci. 2014, 93–94, 28–34. [Google Scholar] [CrossRef]
- Shulman, D. Lightweight, low water content expanded shale, clay and slate cementitious compositions and methods of their production and use. Cem. Conc. Compos. 1999, 21, 242. [Google Scholar]
- Wang, M.; He, X.; Yang, K. Mechanical Properties and Damage Characteristics of Coal-Based Solid Waste Paste Filling Materials with Different Moisture Content. Sustainability 2023, 15, 1523. [Google Scholar] [CrossRef]
- Zhunusov, A.; Tolymbekova, L.; Abdulabekov, Y.; Zholdubayeva, Z.; Bykov, P. Agglomeration of manganese ores and manganese containing wastes of Kazakhstan. Metalurgija 2021, 60, 101–103. [Google Scholar]
- Otarbaev, N.S.; Kapustin, V.M.; Nadirov, K.S.; Bimbetova, G.Z.; Zhantasov, M.K.; Nadirov, R.K. New potential demulsifiers obtained by processing gossypol resin. Indones. J. Chem. 2019, 19, 959–966. [Google Scholar] [CrossRef]
- Zhangabay, N.; Suleimenov, U.; Utelbayeva, A.; Kolesnikov, A.; Baibolov, K.; Imanaliyev, K.; Moldagaliyev, A.; Karshyga, G.; Duissenbekov, B.; Fediuk, R.; et al. Analysis of a Stress-Strain State of a Cylindrical Tank Wall Vertical Field Joint Zone. Buildings 2022, 12, 1445. [Google Scholar] [CrossRef]
- Zheng, Y.; Cui, J.; Gao, P.; Lv, J.; Chi, L.; Nan, H.; Huang, Y.; Yang, F. Newly Generated Ca-Feldspar during Sintering Processes Enhances the Mechanical Strength of Coal Gangue-Based Insulation Bricks. Materials 2023, 16, 7193. [Google Scholar] [CrossRef] [PubMed]
- Zhangabay, N.; Suleimenov, U.; Utelbayeva, A.; Buganova, S. Experimental research of the stress-strain state of prestressed cylindrical shells taking into account temperature effects. Case Stud. Constr. Mater. 2022, 18, e01776. [Google Scholar] [CrossRef]
- Marenov, B.T.; Nadirov, K.S.; Zhantasov, M.K.; Nadirov, R.K. Ethylene-vinyl acetate copolymer/crude gossypol compositions as pour point depressants for waxy oil. Int. J. Chem. Eng. 2020, 2020, 4195382. [Google Scholar] [CrossRef]
- Zhangabay, N.; Sapargaliyeva, B.; Suleimenov, U.; Abshenov, K.; Utelbayeva, A.; Kolesnikov, A.; Baibolov, K.; Fediuk, R.; Arinova, D.; Duissenbekov, B.; et al. Analysis of Stress-Strain State for a Cylindrical Tank Wall Defected Zone. Materials 2022, 15, 5732. [Google Scholar] [CrossRef]
- Turan, M.D.; Silva, J.P.; Sarı, Z.A.; Nadirov, R.; Toro, N. Dissolution of chalcopyrite in presence of chelating agent and hydrogen peroxide. Trans. Indian Inst. Met. 2022, 75, 273–280. [Google Scholar] [CrossRef]
- Kim, A.S.; Akberdin, A.A.; Sultangaziev, R.B. Using Basalt Rocks for Agglomeration of Refractory Chromite Ores of Kazakhstan. Metallurgist 2020, 63, 1005–1012. [Google Scholar] [CrossRef]
- Yu, K.E.; Konyukhov, D.S. Accident risk monitoring in underground space development. MIAB Min. Inf. Anal. Bull. 2022, 1, 97–103. [Google Scholar]
- Donayev, A.; Kolesnikov, A.; Shapalov, S.; Sapargaliyeva, B.; Ivakhniyuk, G. Studies of waste from the mining and metallurgical industry, with the determination of its impact on the life of the population. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Geol. Tech. Sci. 2022, 4, 55–68. [Google Scholar] [CrossRef]
- Gerasimova, E.B.; Melnikova, L.A.; Loseva, A.V. Ecological safety of construction in single-industry town. Constr. Mater. Prod. 2023, 6, 59–78. [Google Scholar]
- Amran, M.; Fediuk, R.; Murali, G.; Vatin, N.; Karelina, M.; Ozbakkaloglu, T.; Krishna, R.S.; Kumar, S.A.; Kumar, D.S.; Mishar, J. Rice Husk Ash-Based Concrete Composites: A Critical Review of Their Properties and Applications. Crystals 2021, 11, 168. [Google Scholar] [CrossRef]
- Kulikova, A.A.; Kovaleva, A.M. Use of tailings of enrichment for laying of the developed space of mines. MIAB. Min. Inf. Anal. Bull. 2021, 2–1, 144–154. [Google Scholar] [CrossRef]
- Fediuk, R. High-strength fibrous concrete of Russian Far East natural materials. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016; Volume 116, p. 012020. [Google Scholar]
- Cao, G.; Liu, R.; He, S.; Liao, S.; Zhang, Z. Mechanical Properties and Chloride Salt Corrosion Resistance of All-Lightweight Shale Ceramsite Concrete. Buildings 2024, 14, 1684. [Google Scholar] [CrossRef]
- Skopintseva, O.V.; Ganova, S.D.; Buzin, A.A.; Fedotova, V.P. Measures to reduce dusting during loading and transportation of solid mineral resources. Gorn. Zhurnal 2019, 12, 76–79. [Google Scholar] [CrossRef]
- Li, X.G.; Yan, F.J.; Yue, X.T.; Wang, X.G. Research progress of ceramsite concrete. Bull. Chin. Ceram. Soc. 2020, 39, 3407–3418+3452. [Google Scholar]
- Bulanov, P.E.; Vdovin, E.A.; Stroganov, V.F. Increasing the level of aging stability of bitumes modified by kaolinite. Mag. Civ. Eng. 2023, 8, 12413. [Google Scholar]
- Abbazov, I.; Kaldybaev, R.; Bektureyeva, G.; Kerimbekova, Z.; Yeshzhanov, A.; Botabaev, N.; Kaldybayeva, G.; Kenzhibayeva, G.; Izteuov, G.; Kolesnikov, A. Theoretical Researching of Particle Movement in Cleaning Zone of Dust-Arrester. Pol. J. Environ. Stud. 2023, 32, 3007–3014. [Google Scholar] [CrossRef]
- Kulikova, E.; Balovtsev, S.V.; Skopintseva, O.V. Complex estimation of geotechnical risks in mine and underground construction. Sustain. Dev. Mt. Territ. 2023, 15, 7–16. [Google Scholar] [CrossRef]
- Al-Kinani, A.M.; Thajeel, J.K.; Al-Umar, M.H.; Fattah, M.Y. Utilizing seismic techniques and dynamic field tests for soil dynamic response prediction in clay soils. Mag. Civ. Eng. 2024, 17, 12504. [Google Scholar]
- Zhanikulov, N.N.; Khudyakova, T.M.; Taimasov, B.T.; Sarsenbayev, B.K.; Dauletiarov, M.S.; Kolesnikov, A.S.; Karshygayev, R.O. Receiving Portland Cement from Technogenic Raw Materials of South Kazakhstan. Eurasian Chem.-Technol. J. 2019, 21, 333–340. [Google Scholar] [CrossRef]
- Kalymbetov, G.Y.; Kedelbayev, B.S.; Yelemanova, Z.R.; Sapargaliyeva, B. Effects of Different Biostimulants on Seed Germination of Sorghum Plants. J. Ecol. Eng. 2023, 24, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Fediuk, R.S.; Lesovik, V.S.; Vavrenyuk, S.V.; Zaiakhanov, M.Y.; Bituyev, A.V.; Klyuev, S.V.; Yu, K.; Lesovik, Y.R.; Bakatov, K.A. Composite cement materials for structures foundation strengthening. Mag. Civ. Eng. 2024, 17, 12701. [Google Scholar]
- Lakhanova, K.M.; Kedelbaev, B.; Korazbekova, K.; Kalymbetov, G.; Baimagambetova, Z. Age-Dependent Depigmentation of Black Karakul Sheep. Int. J. Vet. Sci. 2023, 12, 360–365. [Google Scholar]
- Yessengaliev, D.; Mukhametkhan, M.; Mukhametkhan, Y.; Zhabalova, G.; Kelamanov, B.; Kolesnikova, O.; Shyngysbayev, B.; Aikozova, L.; Kaskataeva, K.; Kuatbay, Y. Studies of the Possibility of Improving the Quality of Iron Ores and Processing of Technogenic Composite Iron-Containing Waste of Metallurgical Production. J. Compos. Sci. 2023, 7, 501. [Google Scholar] [CrossRef]
- Samuratov, Y.; Kelamanov, B.; Akuov, A.; Zhumagaliyev, Y.; Akhmetova, M. Smelting standard grades of manganese ferroalloys from agglomerated thermo-magnetic manganese concentrates. Metalurgija 2020, 59, 85–88. [Google Scholar]
- Yessenbayev, B.A.; Kolesnikov, A.S.; Naukenova, A.S.; Shapalov, S.K.; Ramatullaeva, L.I.; Ivakhniyuk, G.K. Analysis of the impact of bauxite dumps on the environment and public health. MIAB. Min. Inf. Anal. Bull. 2024, 3, 55–69. [Google Scholar]
- Lakhanova, K.M.; Kedelbaev, B.; Yeleugaliyeva, N.; Korazbekova, K. Study of melanin distribution in the hair cells of Karakul lambs of different colours. Small Rumin. Res. 2022, 211, 106693. [Google Scholar] [CrossRef]
- Turabdzhanov, S.M.; Kedelbaev, B.S.; Kushnazarov, P.I.; Ponamaryova, T.V.; Rakhimova, L.S. New approach to the synthesis of polycondensation ion-exchange polymers for wastewater treatment. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Geol. Tech. Sci. 2019, 434, 206–216. [Google Scholar] [CrossRef]
- Liu, D.; Li, S.; Lun, H.; Wang, Q. Analysis of the Influence of Shell Sand Content on the Performance of Ceramisite Lightweight Aggregate Concrete. Buildings 2024, 14, 986. [Google Scholar] [CrossRef]
- Bedov, A.I.; Gabitov, A.I.; Domarova, E.V.; Kolesnikov, A.S. Investigation of the stress-strain state of domical masonry vaults. Constr. Mater. Prod. 2023, 6, 6. [Google Scholar] [CrossRef]
- Kulikova, E.Y.; Balovtsev, S.V. Risk control system for the construction of urban underground structures. IOP Conf. Ser. Mater. Sci. Eng. 2020, 962, 042020. [Google Scholar] [CrossRef]
- Zang, J.; Pan, C.; Hu, Y.; Qu, S. Preparation of ceramsite using dehydrated silt soil and its performance on compressive strength of ceramsite concrete block. Sustainability 2023, 15, 9134. [Google Scholar] [CrossRef]
- Zhangabay, N.; Giyasov, A.; Bakhbergen, S.; Tursunkululy, T.; Kolesnikov, A. Thermovision study of a residential building under climatic conditions of South Kazakhstan in a cold period. Constr. Mater. Prod. 2024, 7, 1. [Google Scholar] [CrossRef]
- Filin, A.; Kolbina, I.; Seidaliyev, A.; Koibakova, S.; Mankesheva, O. Comparison of the Quality of Gas Equipment at Metallurgical and Coke-Chemical Enterprises and Production Plants. Pol. J. Environ. Stud. 2024, 33, 2999–3008. [Google Scholar] [CrossRef] [PubMed]
- Zhangabay, N.; Giyasov, A.; Ybray, S.; Tursunkululy, T.; Kolesnikov, A. Field thermovision study of externsl enclosure for multi-storey residential building under climatic conditions of Northern Kazakhstan. Constr. Mater. Prod. 2024, 7, 1–21. [Google Scholar] [CrossRef]
- Yessengaliyev, D.; Kelamanov, B.; Sariev, O.; Kuanalin, Y. Research of thermal analysis of nickel ore and mixture with carbon-containing reducing agents by non-isothermal method. Metalurgija 2024, 64, 344–346. [Google Scholar]
- Filin, A.E.; Kurnosov, I.Y.; Kolesnikova, L.A.; Ovchinnikova, T.I.; Kolesnikov, A.S. Description of The Methodology for Conducting an Experiment on Dust Deposition of Mining and Metallurgical Production. Ugol 2022, 9, 67–72. [Google Scholar] [CrossRef]
- Razorenov, Y.I.; Yatsenko, E.A.; Goltsman, B.M. Building materials based on manmade waste of the mining industry and solid fuel energy—An environmental trend of the modern time. Gorn. Zhurnal 2021, 11, 95–98. [Google Scholar] [CrossRef]
- Levitsky, I.A.; Pavlyukevich, Y.G.; Bogdan, E.O.; Kichkaylo, O.V. Production of ceramic gravel by using of galvanic wastewater sludge. Glass Ceram. 2013, 7, 23–27. [Google Scholar]
- Makulbekova, G.; Kocherov, Y.; Pivovarov, O.; Zhakipbayev, B.; Shapalov, S.; Kenzhaliyeva, G. Efficient and fire-resistant light expanded-clay granulates for heat insulation via heat treatment of bentonite clays with industrial wastes. ARPN J. Eng. Appl. Sci. 2021, 16, 2709–2721. [Google Scholar]
- Ufimtsev, V.M. Structural fired porous fillers based on technogenic raw materials. Constr. Mater. Equip. Technol. XXI Century 2013, 5, 25–29. [Google Scholar]
- Leismann, A. Utilization of hard-coal mining wastes and red mud for the production of expanded clay granulate. Keram. Z. 1999, 51, 26–31. [Google Scholar]
- Sigachev, N.P.; Konovalova, N.A.; Konnov, V.I.; Pankov, P.P.; Efimenko, N.S. Efficiency of using of ash and slag wastes from the Trans-Baikal Territory in the production of road cement soils. Ecol. Ind. Russ. 2015, 19, 24–27. [Google Scholar]
- Pao, Y. Granulation and drying of fly-ash considered with the aid of a mathematical model. ZKG Int. Ed. 1984, 37, 72–79. [Google Scholar]
- Moein, M.; Habib Akbarzadeh, B. Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete. Comput. Concr. 2024, 33, 309–324. [Google Scholar]
- Abdrakhimov, V.Z.; Abdrakhimova, E.S. Use of oil production wastes in expanded clay production. Ecol. Prod. 2012, 8, 52–55. [Google Scholar]
- Vasilenko, T.A.; Saleh-Zhafer, A.Z. Physico-mechanical properties of expanded clay gravel obtained by using of calcium-containing technogenic materials. Mod. Probl. Sci. Educ. 2015, 1. Available online: www.science-education.ru/125-19899 (accessed on 5 April 2016).
- Andrea, B.; Roberto, A. Expanded Inorganic Insulating Materials: Production, Characteristics and Application Areas. Termotec. Milano. 1987, 41, 55–61. [Google Scholar]
- Knatko, M.V.; Scherbakova, E.V. Use perspectives for recycled raw material resources. Mag. Civ. Eng. 2009, 7, 55–56. [Google Scholar] [CrossRef]
- Tanutrov, I.N.; Sviridova, M.N.; Savenya, A.N. New technology of joint processing of technogenic wastes. News Univ. Non-Ferr. Metall. 2013, 1, 21–26. [Google Scholar]
- Starostina, I.V.; Simonov, M.M.; Pendyurin, E.A.; Besedina, I.N. Assessment of the toxicological properties of expanded clay gravel by using of ferrovanadium production sludge. Mod. Probl. Sci. Educ. 2014, 5. Available online: www.scienceeducation.ru/119-14533 (accessed on 15 April 2016).
- Lebedev, M.S.; Strokova, V.V.; Karatsupa, S.V.; Dmitrieva, T.V. Designing of soil-concretes using the kursk magnetic anomaly technogenic raw and waste-lime-based binder for reinforcing of road pavements subgrades. World Appl. Sci. J. 2014, 30, 970–982. [Google Scholar]
- Gao, Z.; Yuan, B.; Qi, C.; Liu, J.; Zhu, Y.; Wu, S.; Wang, P.; Kong, Y.; Jin, H.; Mu, B. Multi-stage releasing water: The unique decomposition property makes attapulgite function as an unexpected clay mineral-based gas source in intumescent flame retardant. Compos. Part A Alied Sci. Manuf. 2024, 17, 108014. [Google Scholar] [CrossRef]
- Rodin, A.I.; Ermakov, A.A.; Kyashkin, V.M.; Rodina, N.G.; Erofeev, V.T. Processes of foaming and formation of the structure of porous glass ceramics from siliceous rocks. Mag. Civ. Eng. 2023, 121, 12109. [Google Scholar] [CrossRef]
- Rubinovich, S.E. A Raw Mixture for the Production of Expanded Clay. Patent RU 2,467,966 C1, 27 November 2012. [Google Scholar]
- Pavlovna, F.O. A Raw Material Mixture for the Production of a Light Filler. Patent RU 2 287 499 C1, 20 November 2006. [Google Scholar]
- Andreevna, S.T. A Method for Producing Expanded Clay. Patent RU 2,397,963 C2, 27 August 2010. [Google Scholar]
- Shperber, R.E.; Shperber, E.R.; Shperber, F.R. Method of Obtaining Expanded Clay. Patent RU 2112758, 6 October 1998. [Google Scholar]
- Skripnikova, N.K.; Semenovykh, M.A.; Shekhovtsov, V.V. Anorthite-based building ceramics. Mag. Civ. Eng. 2023, 117, 11706. [Google Scholar] [CrossRef]
- Abdullah, A.H.; Mohammed, S.D. The Fire Effect on the Performance of Reinforced Concrete Beams with Partial Replacement of Coarse Aggregates by Expanded Clay Aggregates. Eng. Technol. Alied Sci. Res. 2023, 13, 12220–12225. [Google Scholar] [CrossRef]
- Kocherov, E.N.; Kolesnikov, A.S.; Mamitova, A.D. Research of clay raw materials of South Kazakhstan for thermal insulating keramzit production. Environmental technologies and engineering for sustainable development. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023. [Google Scholar] [CrossRef]
- GOST 32496-2013; Porous Fillers for Lightweight Concrete. Technical Conditions. GostPerevod: London, UK, 2013.
Indicators | Unit of Measure | Average Value |
---|---|---|
Total humidity | % | 13.8 |
Analytical humidity | % | 5.7 |
Ash content | % | 18.1 |
Volatile yield | % | 46.7 |
High heat of combustion | kcal/kg | 7265 |
Lower combustion heat | kcal/kg | 4805 |
Deformation initiation temperature | °C | 1200 |
Melting point | °C | 1480 |
Liquid melting point temperature | °C | >1500 |
Grinding index | 1.05 |
Aggregate Size, mm, and Their Content, % | |||
---|---|---|---|
0.1–0.2 | 0.074–0.1 | 0.05–0.074 | 0–0.05 |
9.4 | 13.1 | 18.7 | 58.8 |
SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | CaO | MgO | Na2O | K2O | SO3 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
63.45 | 0.45 | 14.13 | 5.42 | 0.51 | 3.28 | 3.17 | 0.62 | 2.4 | 0.88 | 5.69 |
>0.001 | 0.001–0.005 | 0.005–0.01 | 0.01–0.05 | 0.05–0.5 |
---|---|---|---|---|
41 | 15 | 9 | 18 | 17 |
Element | O | Na | Mg | Al | Si | K | Ca | Ti | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
Weight, % | 53.50 | 0.94 | 1.97 | 6.17 | 20.17 | 2.13 | 9.83 | 0.40 | 4.62 | 0.12 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocherov, Y.; Kolesnikov, A.; Makulbekova, G.; Mamitova, A.; Ramatullaeva, L.; Medeshev, B.; Kolesnikova, O. Investigation of the Physico-Chemical and Mechanical Properties of Expanded Ceramsite Granules Made on the Basis of Coal Mining Waste. J. Compos. Sci. 2024, 8, 306. https://doi.org/10.3390/jcs8080306
Kocherov Y, Kolesnikov A, Makulbekova G, Mamitova A, Ramatullaeva L, Medeshev B, Kolesnikova O. Investigation of the Physico-Chemical and Mechanical Properties of Expanded Ceramsite Granules Made on the Basis of Coal Mining Waste. Journal of Composites Science. 2024; 8(8):306. https://doi.org/10.3390/jcs8080306
Chicago/Turabian StyleKocherov, Yerkebulan, Alexandr Kolesnikov, Gulnaz Makulbekova, Aigul Mamitova, Lazzat Ramatullaeva, Bahtiyor Medeshev, and Olga Kolesnikova. 2024. "Investigation of the Physico-Chemical and Mechanical Properties of Expanded Ceramsite Granules Made on the Basis of Coal Mining Waste" Journal of Composites Science 8, no. 8: 306. https://doi.org/10.3390/jcs8080306
APA StyleKocherov, Y., Kolesnikov, A., Makulbekova, G., Mamitova, A., Ramatullaeva, L., Medeshev, B., & Kolesnikova, O. (2024). Investigation of the Physico-Chemical and Mechanical Properties of Expanded Ceramsite Granules Made on the Basis of Coal Mining Waste. Journal of Composites Science, 8(8), 306. https://doi.org/10.3390/jcs8080306