Flexural Behavior of Biocompatible High-Performance Polymer Composites for CAD/CAM Dentistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Specimen Preparation
2.3. Thermal Cycling
2.4. Mini-Flexural Test (MFT)
2.5. Statical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fugolin, A.; Pfeifer, C.S. New Resins for Dental Composites. J. Dent. Res. 2017, 96, 002203451772065. [Google Scholar] [CrossRef]
- Burns, D.R.; Beck, D.A.; Nelson, S.K.; Committee on Research in Fixed Prosthodontics of the Academy of Fixed, P. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: Report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J. Prosthet. Dent. 2003, 90, 474–497. [Google Scholar] [CrossRef]
- Prasad, K.; Bazaka, O.; Chua, M.; Rochford, M.; Fedrick, L.; Spoor, J.; Symes, R.; Tieppo, M.; Collins, C.; Cao, A. Metallic biomaterials: Current challenges and opportunities. Materials 2017, 10, 884. [Google Scholar] [CrossRef]
- Bechir, F.; Bataga, S.M.; Ungureanu, E.; Vranceanu, D.M.; Pacurar, M.; Bechir, E.S.; Cotrut, C.M. Experimental study regarding the behavior at different pH of two types of Co-Cr alloys used for prosthetic restorations. Materials 2021, 14, 4635. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.T.; Devi, S.P.; Krithika, C.; Raghavan, R. Review of metallic biomaterials in dental applications. J. Pharm. Bioallied Sci. 2020, 12, S14. [Google Scholar] [CrossRef] [PubMed]
- Poggio, C.E.; Ercoli, C.; Rispoli, L.; Maiorana, C.; Esposito, M. Metal-free materials for fixed prosthodontic restorations. Cochrane Database Syst. Rev. 2017, 12, CD009606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, A.D.; Beatrice, C.A.G. Nanocomposites-Recent Evolutions; Intech Open: London, UK, 2018; pp. 103–128. [Google Scholar]
- Luo, C.; Liu, Y.; Peng, B.; Chen, M.; Liu, Z.; Li, Z.; Kuang, H.; Gong, B.; Li, Z.; Sun, H. PEEK for Oral Applications: Recent Advances in Mechanical and Adhesive Properties. Polymers 2023, 15, 386. [Google Scholar] [CrossRef]
- Petersen, R.; Liu, P.R. 3D-woven fiber-reinforced composite for CAD/CAM dental application. Sampe J. 2016, 2016, LB15--0138. [Google Scholar]
- Benalcázar Jalkh, E.B.; Machado, C.M.; Gianinni, M.; Beltramini, I.; Piza, M.; Coelho, P.G.; Hirata, R.; Bonfante, E.A. Effect of Thermocycling on Biaxial Flexural Strength of CAD/CAM, Bulk Fill, and Conventional Resin Composite Materials. Oper. Dent. 2019, 44, E254–E262. [Google Scholar] [CrossRef] [PubMed]
- Porto, T.S.; Roperto, R.C.; Akkus, A.; Akkus, O.; Teich, S.; Faddoul, F.F.; Porto-Neto, S.D.T.; Campos, E.A.D. Effect of thermal cycling on fracture toughness of CAD/CAM materials. Am. J. Dent. 2018, 31, 205–210. [Google Scholar]
- Marchesi, G.; Camurri Piloni, A.; Nicolin, V.; Turco, G.; Di Lenarda, R. Chairside CAD/CAM Materials: Current Trends of Clinical Uses. Biology 2021, 10, 1170. [Google Scholar] [CrossRef]
- Barenghi, L.; Barenghi, A.; Garagiola, U.; Di Blasio, A.; Gianni, A.B.; Spadari, F. Pros and Cons of CAD/CAM Technology for Infection Prevention in Dental Settings during COVID-19 Outbreak. Sensors 2021, 22, 49. [Google Scholar] [CrossRef]
- Bechir, F.; Bataga, S.M.; Tohati, A.; Ungureanu, E.; Cotrut, C.M.; Bechir, E.S.; Suciu, M.; Vranceanu, D.M. Evaluation of the Behavior of Two CAD/CAM Fiber-Reinforced Composite Dental Materials by Immersion Tests. Materials 2021, 14, 7185. [Google Scholar] [CrossRef]
- Ellakany, P.; Fouda, S.M.; Mahrous, A.A.; AlGhamdi, M.A.; Aly, N.M. Influence of CAD/CAM Milling and 3D-Printing Fabrication Methods on the Mechanical Properties of 3-Unit Interim Fixed Dental Prosthesis after Thermo-Mechanical Aging Process. Polymers 2022, 14, 4103. [Google Scholar] [CrossRef] [PubMed]
- Algharaibeh, S.; Wan, H.; Al-Fodeh, R.; Ireland, A.J.; Zhang, D.; Su, B. Fabrication and mechanical properties of biomimetic nacre-like ceramic/polymer composites for chairside CAD/CAM dental restorations. Dent. Mater. 2022, 38, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Subhan, M.A.; Choudhury, K.P.; Neogi, N. Advances with molecular nanomaterials in industrial manufacturing applications. Nanomanufacturing 2021, 1, 75–97. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [Green Version]
- Schwitalla, A.D.; Spintig, T.; Kallage, I.; Muller, W.D. Flexural behavior of PEEK materials for dental application. Dent. Mater. 2015, 31, 1377–1384. [Google Scholar] [CrossRef]
- Li, E.Z.; Guo, W.L.; Wang, H.D.; Xu, B.S.; Liu, X.T. Research on Tribological Behavior of PEEK and Glass Fiber Reinforced PEEK Composite. Phys. Procedia 2013, 50, 453–460. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, S.P.; Dable, R.; Raj, A.P.N.; Mutneja, P.; Srivastava, S.B.; Haque, M. Comparison of Mechanical Properties of PEEK and PMMA: An In Vitro Study. J. Contemp. Dent. Pract. 2021, 22, 179–183. [Google Scholar]
- ISO 10477:2020; Dentistry—Polymer-Based Crown and Veneering Materials. International Organization for Standardization (ISO): Geneva, Switzerland, 2020.
- Hussein, M.O. Biomechanical Performance of PEEK and Graphene-Modified PMMA as Telescopic Removable Partial Denture Materials: A Nonlinear 3D Finite Element Analysis. Int. J. Prosthodont. 2022, 35, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Şahin, Z.; Ergün, G.; Ataol, A.S.; Ergöçen, S. Evaluation of Some Mechanical Properties of CAD/CAM Polymers (PEEK/PMMA) and Conventional PMMA Materials: An In Vitro Study. Turk. Klin. J. Dent. Sci. 2022, 28, 139–148. [Google Scholar] [CrossRef]
- Yap, A.; Eweis, A.; Yahya, N. Dynamic and Static Flexural Appraisal of Resin-based Composites: Comparison of the ISO and Mini-flexural Tests. Oper. Dent. 2018, 43, E223–E231. [Google Scholar] [CrossRef] [Green Version]
- Freitas, R.; Duarte, S.; Feitosa, S.; Dutra, V.; Lin, W.S.; Panariello, B.H.D.; Carreiro, A. Physical, Mechanical, and Anti-Biofilm Formation Properties of CAD-CAM Milled or 3D Printed Denture Base Resins: In Vitro Analysis. J. Prosthodont. 2022, 32, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Yap, A.; Teoh, H. Comparison of flexural properties of composite restoratives using the ISO and mini-flexural tests. J. Oral Rehabil. 2003, 30, 171–177. [Google Scholar] [CrossRef]
- Della Bona, Á.; Benetti, P.; Borba, M.; Cecchetti, D. Flexural and diametral tensile strength of composite resins. Braz. Oral Res. 2008, 22, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Babaier, R.S.; Haider, J.; Alshabib, A.; Silikas, N.; Watts, D.C. Mechanical behaviour of prosthodontic CAD/CAM polymer composites aged in three food-simulating liquids. Dent. Mater. 2022, 38, 1492–1506. [Google Scholar] [CrossRef]
- Bioloren Srl. TRILOR®Manual the Solution for a Non-Metal Dentistry; Bioloren Srl: Saronno, VA, Italy, 2019; pp. 1–16. [Google Scholar]
- Ruschel, G.H.; Gomes, É.A.; Silva-Sousa, Y.T.; Pinelli, R.G.P.; Sousa-Neto, M.D.; Pereira, G.K.R.; Spazzin, A.O. Mechanical properties and superficial characterization of a milled CAD-CAM glass fiber post. J. Mech. Behav. Biomed. Mater. 2018, 82, 187–192. [Google Scholar] [CrossRef]
- Institut Straumann AG. JUVORA™ PEEK High Performance Polymer Manufactured by JUVORA; Institut Straumann AG: Basel, Switzerland, 2019; pp. 1–4. [Google Scholar]
- Juvora, Ltd. JUVORA Dental Disc The Processing Guide; JUVORA Ltd. Technology Centre: Lancashire, UK, 2015; pp. 1–33. [Google Scholar]
- Santos, W.R.G.d.; Brito, M.K.T.d.; Lima, A.G.B.d. Study of the Moisture Absorption in Polymer Composites Reinforced with Vegetal Fiber Using Langmuir’s Model. Mater. Res. 2019, 22 (Suppl. S1), e20180848. [Google Scholar] [CrossRef]
- Suzaki, N.; Yamaguchi, S.; Nambu, E.; Tanaka, R.; Imazato, S.; Hayashi, M. Fabricated CAD/CAM Post-Core Using Glass Fiber-Reinforced Resin Shows Innovative Potential in Restoring Pulpless Teeth. Materials 2021, 14, 6199. [Google Scholar] [CrossRef]
- Rees, J.S.; Jacobsen, P.H. The elastic moduli of enamel and dentine. Clin. Mater. 1993, 14, 35–39. [Google Scholar] [CrossRef]
- Ma, C.; Du, T.; Niu, X.; Fan, Y. Biomechanics and mechanobiology of the bone matrix. Bone Res. 2022, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- ISO 4049:2019; Dentistry—Polymer-Based Restorative Materials. The International Organization for Standardization: Geneva, Switzerland, 2019.
- Suzaki, N.; Yamaguchi, S.; Hirose, N.; Tanaka, R.; Takahashi, Y.; Imazato, S.; Hayashi, M. Evaluation of physical properties of fiber-reinforced composite resin. Dent. Mater. 2020, 36, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Yasue, T.; Iwasaki, N.; Shiozawa, M.; Tsuchida, Y.; Suzuki, T.; Takahashi, H. Effect of fiberglass orientation on flexural properties of fiberglass-reinforced composite resin block for CAD/CAM. Dent. Mater. J. 2019, 38, 738–742. [Google Scholar] [CrossRef] [Green Version]
- Calheiros, F.C.; Costa Pfeifer, C.S.; BrandÃO, L.L.; Agra, C.M.; Ballester, R.Y. Flexural properties of resin composites: Influence of specimen dimensions and storage conditions. Dent. Mater. J. 2013, 32, 228–232. [Google Scholar] [CrossRef] [Green Version]
- ISO 20795:2013(en); Dentistry—Base Polymers. International Organization for Standardization: Geneva, Switzerland, 2013.
- Al Aali, K.A.; Alresayes, S.; Alhenaki, A.M.; Vohra, F.; Abduljabbar, T. Influence of time and hydration (ageing) on flexural strength of Yttrium stabilized Zirconia polycrystals (Y-TZP) fabricated with different CAD-CAM Systems. Pak. J. Med. Sci. 2021, 37, 833. [Google Scholar] [CrossRef] [PubMed]
- Lucsanszky, I.J.R.; Ruse, N.D. Fracture Toughness, Flexural Strength, and Flexural Modulus of New CAD/CAM Resin Composite Blocks. J. Prosthodont. 2020, 29, 34–41. [Google Scholar] [CrossRef]
- Vichi, A.; Zhao, Z.; Paolone, G.; Scotti, N.; Mutahar, M.; Goracci, C.; Louca, C. Factory Crystallized Silicates for Monolithic Metal-Free Restorations: A Flexural Strength and Translucency Comparison Test. Materials 2022, 15, 7834. [Google Scholar] [CrossRef]
- Alghazzawi, T.F.; Janowski, G.M.; Ning, H.; Eberhardt, A.W. Qualitative SEM analysis of fracture surfaces for dental ceramics and polymers broken by flexural strength testing and crown compression. J Prosthodont 2023, 32, e100–e110. [Google Scholar] [CrossRef]
- Lohbauer, U.; Belli, R. The Mechanical Performance of a Novel Self-Adhesive Restorative Material. J. Adhes. Dent. 2020, 22, 47–58. [Google Scholar] [CrossRef]
- Wendler, M.; Stenger, A.; Ripper, J.; Priewich, E.; Belli, R.; Lohbauer, U. Mechanical degradation of contemporary CAD/CAM resin composite materials after water ageing. Dent. Mater. 2021, 37, 1156–1167. [Google Scholar] [CrossRef]
- Trujillo, M.; Newman, S.M.; Stansbury, J.W. Use of near-IR to monitor the influence of external heating on dental composite photopolymerization. Dent. Mater. 2004, 20, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Meriç, G.; Ruyter, I.E. Influence of thermal cycling on flexural properties of composites reinforced with unidirectional silica-glass fibers. Dent. Mater. 2008, 24, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, L.; Fabiano, F.; Bonaccorsi, L.M.; Fabiano, V.; Borsellino, C. Evaluation of the Clinical Impact of ISO 4049 in Comparison with Miniflexural Test on Mechanical Performances of Resin Based Composite. Int. J. Biomater. 2015, 2015, 149798. [Google Scholar] [CrossRef] [PubMed]
- Blatz, M.B.; Vonderheide, M.; Conejo, J. The Effect of Resin Bonding on Long-Term Success of High-Strength Ceramics. J. Dent. Res. 2018, 97, 132–139. [Google Scholar] [CrossRef]
Brand | Abbreviations | Type | Manufacturer | Flexural Strength (MPA ***) |
---|---|---|---|---|
JUVORA™ Dental disc | PEEK * (P) | Unfilled, poly-ether-ether ketone | JUVORA Ltd., Global Technology Centre, Lancashire, UK (Lot J000077) | 170 |
TRILOR® disc | FRC ** (F) | Techno-polymer, fiber-reinforced composite | Bioloren® S.r.l Metal free dental solutions, Saronno, VA, Italy (Lot 2219) | 540 |
Descriptive Statistics | Material | N | Mean (MPa) | Standard Deviation (MPa) | SEM |
---|---|---|---|---|---|
Fs before aging | uF | 5 | 1014.01 | 107.39 | 48.03 |
uP | 5 | 341.40 | 31.81 | 14.23 | |
Total | 10 | 677.70 | 362.28 | ||
Fs after aging | aF | 5 | 949.25 | 123.03 | 55.02 |
aP | 5 | 334.27 | 11.15 | 4.99 | |
Total | 10 | 641.76 | 334.42 |
Paired Samples t-Test for Comparing Flexural Strength after and before Aging | ||||||||||||||
Paired Differences | 95% Confidence Interval of the Difference | |||||||||||||
Group | Mean | SD | SEM | Lower | Upper | t | Df | p | ||||||
F * | uF | −64.76 | 43.69 | 19.54 | −119.01 | −10.50 | −3.31 | 4 | 0.03 | |||||
aF | ||||||||||||||
P | uP | −7.13 | 23.03 | 10.3 | 35.72 | 21.47 | −0.69 | 4 | 0.53 | |||||
aP | ||||||||||||||
Independent Sample T-Test for Comparing the Flexural Strength Between the Two Materials | ||||||||||||||
95% Confidence Interval of the Difference | ||||||||||||||
Group | Mean | SD | SEM | Mean Difference | SEM | Lower | Upper | t | Df | p | ||||
Unaged (u) * | uF | 1014.01 | 107.39 | 48.03 | 672.61 | 50.09 | 557.11 | 788.12 | 13.43 | 8 | <0.001 | |||
uP | 341.4 | 31.81 | 14.23 | |||||||||||
Aged (a) * | aF | 949.25 | 123.03 | 55.02 | 614.98 | 55.24 | 487.59 | 742.38 | 11.13 | 8 | <0.001 | |||
aP | 334.27 | 11.15 | 4.99 | |||||||||||
Difference (a-u) * | aF-uF | −64.76 | 43.7 | 19.54 | −57.63 | 22.09 | −108.57 | −6.69 | −2.61 | 8 | 0.03 | |||
aP-uP | −7.13 | 23.03 | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeslam, H.E. Flexural Behavior of Biocompatible High-Performance Polymer Composites for CAD/CAM Dentistry. J. Compos. Sci. 2023, 7, 270. https://doi.org/10.3390/jcs7070270
Yeslam HE. Flexural Behavior of Biocompatible High-Performance Polymer Composites for CAD/CAM Dentistry. Journal of Composites Science. 2023; 7(7):270. https://doi.org/10.3390/jcs7070270
Chicago/Turabian StyleYeslam, Hanin E. 2023. "Flexural Behavior of Biocompatible High-Performance Polymer Composites for CAD/CAM Dentistry" Journal of Composites Science 7, no. 7: 270. https://doi.org/10.3390/jcs7070270
APA StyleYeslam, H. E. (2023). Flexural Behavior of Biocompatible High-Performance Polymer Composites for CAD/CAM Dentistry. Journal of Composites Science, 7(7), 270. https://doi.org/10.3390/jcs7070270