Structure and Oxidation Resistance of Mo-Y-Zr-Si-B Coatings Deposited by DCMS and HIPIMS Methods Using Mosaic Targets
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Coating Structure
3.2. Oxidation Resistance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soboyejo, W.O.; Obayemi, J.D.; Annan, E.; Ampaw, E.K.; Daniels, L.; Rahbar, N. Review of High Temperature Ceramics for Aerospace Applications. Adv. Mater. Res. 2016, 1132, 385–407. [Google Scholar] [CrossRef]
- Hague, J.R. Refractory Ceramics for Aerospace, A Materials Selection Handbook; Lynch, J.F., Rudnick, A., Holden, F.C., Duckworth, W.H., Eds.; American Ceramic Society: Westerville, OH, USA, 1967; p. 265. [Google Scholar]
- Yanagihara, K.; Przybylski, K.; Maruyama, T. The Role of Microstructure on Pesting during Oxidation of MoSi2 and Mo(Si,Al)2 at 773 K. Oxid. Met. 1997, 47, 277–293. [Google Scholar] [CrossRef]
- Fujiwara, H.; Ueda, Y.; Awasthi, A.; Krishnamurthy, N.; Garg, S.P. Thermodynamic Study on Refractory Metal Silicides. J. Phys. Chem. Solids 2005, 66, 298–302. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Iatsyuk, I.V.; Shvindina, N.V.; Levashov, E.A.; Shtansky, D.V. Comparative Investigation of Structure, Mechanical Properties, and Oxidation Resistance of Mo-Si-B and Mo-Al-Si-B Coatings. Corros. Sci. 2017, 123, 319–327. [Google Scholar] [CrossRef]
- Schneibel, J.H.; Ritchie, R.O.; Kruzic, J.J.; Tortorelli, P.F. Optimization of Mo-Si-B Intermetallic Alloys. Undefined 2005, 36, 525–531. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sytchenko, A.D.; Sviridova, T.A.; Sidorenko, D.A.; Andreev, N.V.; Klechkovskaya, V.V.; Polčak, J.; Levashov, E.A. Effects of Doping with Zr and Hf on the Structure and Properties of Mo-Si-B Coatings Obtained by Magnetron Sputtering of Composite Targets. Surf. Coat. Technol. 2022, 442, 128141. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, X. A Comparative Study of Two Kinds of Y and Al Modified Silicide Coatings on an Nb–Ti–Si Based Alloy Prepared by Pack Cementation Technique. Corros. Sci. 2011, 53, 4291–4299. [Google Scholar] [CrossRef]
- Wang, C.C.; Li, K.Z.; He, D.Y.; Shi, X.H. Oxidation Behavior and Mechanism of MoSi2-Y2O3 Composite Coating Fabricated by Supersonic Atmospheric Plasma Spraying. Appl. Surf. Sci. 2020, 506, 144776. [Google Scholar] [CrossRef]
- Majumdar, S.; Burk, S.; Schliephake, D.; Krüger, M.; Christ, H.J.; Heilmaier, M. A Study on Effect of Reactive and Rare Earth Element Additions on the Oxidation Behavior of Mo-Si-B System. Oxid. Met. 2013, 80, 219–230. [Google Scholar] [CrossRef]
- Majumdar, S.; Schliephake, D.; Gorr, B.; Christ, H.J.; Heilmaier, M. Effect of Yttrium Alloying on Intermediate to High-Temperature Oxidation Behavior of Mo-Si-B Alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2013, 44, 2243–2257. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, K.; Sha, J.; Zhou, C. Microstructure and Wear Behavior of Mo–60Si–5B Coating Doped with 0.5 At% La by Spark Plasma Sintering. Prog. Nat. Sci. Mater. Int. 2022, 32, 752–757. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, K.; Sha, J.; Zhou, C. Oxidation Behavior of Si- Rich Mo-Si-B Coating Doped with La by Spark Plasma Sintering. Corros. Sci. 2021, 192, 109762. [Google Scholar] [CrossRef]
- Terent’eva, V.S.; Zhestkov, B.E. Multifunctional High-Temperature D5 MAI and M1 MAI Coatings. Russ. J. Phys. Chem. B 2009, 3, 391–396. [Google Scholar] [CrossRef]
- Lange, A.; Heilmaier, M.; Sossamann, T.A.; Perepezko, J.H. Oxidation Behavior of Pack-Cemented Si–B Oxidation Protection Coatings for Mo–Si–B Alloys at 1300 °C. Surf. Coat. Technol. 2015, 266, 57–63. [Google Scholar] [CrossRef]
- Sun, J.; Fu, Q.G.; Guo, L.P.; Liu, Y.; Huo, C.X.; Li, H.J. Effect of Filler on the Oxidation Protective Ability of MoSi2 Coating for Mo Substrate by Halide Activated Pack Cementation. Mater. Des. 2016, 92, 602–609. [Google Scholar] [CrossRef]
- Perepezko, J.H.; Sossaman, T.A.; Taylor, M. Environmentally Resistant Mo-Si-B-Based Coatings. J. Therm. Spray Technol. 2017, 26, 929–940. [Google Scholar] [CrossRef]
- Ritt, P.; Sakidja, R.; Perepezko, J.H. Mo–Si–B Based Coating for Oxidation Protection of SiC–C Composites. Surf. Coat. Technol. 2012, 206, 4166–4172. [Google Scholar] [CrossRef]
- Xu, Y.; Li, W.; Yang, X. Oxidation Performance of Aluminide Coating on Inconel 783 Bolts for Ultra-Supercritical Steam Turbine Application. Corros. Sci. 2022, 196, 110033. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Lai, Z.; Kuang, T.; Djouadi, M.A. Microstructure and Mechanical Properties of HfBx Coatings Deposited on Cemented Carbide Substrates by HiPIMS and DCMS. Surf. Coat. Technol. 2023, 452, 129119. [Google Scholar] [CrossRef]
- Kumar, A.; Bauri, R.; Naskar, A.; Chattopadhyay, A.K. Characterization of HiPIMS and DCMS Deposited TiAlN Coatings and Machining Performance Evaluation in High Speed Dry Machining of Low and High Carbon Steel. Surf. Coat. Technol. 2021, 417, 127180. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Horwat, D.; Pierson, J.F.; Levashov, E.A. Comparative Analysis of Cr-B Coatings Deposited by Magnetron Sputtering in DC and HIPIMS Modes. Tech. Phys. Lett. 2014, 40, 614–617. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sheveyko, A.N.; Vorotilo, S.A.; Levashov, E.A. Wear-Resistant Ti–Al–Ni–C–N Coatings Produced by Magnetron Sputtering of SHS-Targets in the DC and HIPIMS Modes. Ceram. Int. 2020, 46, 1775–1783. [Google Scholar] [CrossRef]
- Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A.P.; Gudmundsson, J.T. Ionized Physical Vapor Deposition (IPVD): A Review of Technology and Applications. Thin Solid Film. 2006, 513, 1–24. [Google Scholar] [CrossRef]
- Lattemann, M.; Ehiasarian, A.P.; Bohlmark, J.; Persson, P.Å.O.; Helmersson, U. Investigation of High Power Impulse Magnetron Sputtering Pretreated Interfaces for Adhesion Enhancement of Hard Coatings on Steel. Surf. Coat. Technol. 2006, 200, 6495–6499. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, F.V. Possibilities of Glow Discharge Optical Emission Spectroscopy in the Investigation of Coatings. Russ. J. Non-Ferrous Met. 2014, 55, 494–504. [Google Scholar] [CrossRef]
- Chen, P.Y.; Wang, W.C.; Wu, Y.T. Experimental Investigation of Thin Film Stress by Stoney’s Formula. Measurement 2019, 143, 39–50. [Google Scholar] [CrossRef]
- Sarakinos, K.; Alami, J.; Konstantinidis, S. High Power Pulsed Magnetron Sputtering: A Review on Scientific and Engineering State of the Art. Surf. Coat. Technol. 2010, 204, 1661–1684. [Google Scholar] [CrossRef]
- Sytchenko, A.D.; Kiryukhantsev-Korneev, P. V Plasma Diagnostics during Deposition of Zr-B-N Coatings by Magnetron Sputtering of UHTC Ceramic in DCMS and HIPIMS Modes. J. Phys. Conf. Ser. 2021, 2064, 012062. [Google Scholar] [CrossRef]
- Zubkins, M.; Arslan, H.; Bikse, L.; Purans, J. High Power Impulse Magnetron Sputtering of Zn/Al Target in an Ar and Ar/O2 Atmosphere: The Study of Sputtering Process and AZO Films. Surf. Coat. Technol. 2019, 369, 156–164. [Google Scholar] [CrossRef]
- Samuelsson, M.; Lundin, D.; Jensen, J.; Raadu, M.A.; Gudmundsson, J.T.; Helmersson, U. On the Film Density Using High Power Impulse Magnetron Sputtering. Surf. Coat. Technol. 2010, 205, 591–596. [Google Scholar] [CrossRef]
- Nayak, M.; Lodha, G.S. Optical Response Near the Soft X-ray Absorption Edges and Structural Studies of Low Optical Contrast System Using Soft X-ray Resonant Reflectivity. J. At. Mol. Opt. Phys. 2011, 2011, 649153. [Google Scholar] [CrossRef]
- Filatova, E.O.; Sakhonenkov, S.S.; Gaisin, A.U.; Konashuk, A.S.; Chumakov, R.G.; Pleshkov, R.S.; Chkhalo, N.I. Inhibition of Chemical Interaction of Molybdenum and Silicon in a Mo/Si Multilayer Structure by the Formation of Intermediate Compounds. Phys. Chem. Chem. Phys. 2021, 23, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Sakhonenkov, S.S.; Filatova, E.O.; Gaisin, A.U.; Kasatikov, S.A.; Konashuk, A.S.; Pleshkov, R.S.; Chkhalo, N.I. Angle Resolved Photoelectron Spectroscopy as Applied to X-ray Mirrors: An in Depth Study of Mo/Si Multilayer Systems. Phys. Chem. Chem. Phys. 2019, 21, 25002–25010. [Google Scholar] [CrossRef] [PubMed]
- XPS, AES, UPS and ESCA, LaSurface.Com. Available online: http://www.lasurface.com/database/elementxps.php (accessed on 15 September 2022).
- Durand, C.; Vallée, C.; Dubourdieu, C.; Gautier, E.; Bonvalot, M.; Joubert, O. Interface Formation during the Yttrium Oxide Deposition on Si by Pulsed Liquid-Injection Plasma Enhanced Metal-Organic Chemical Vapor Deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2004, 22, 2490. [Google Scholar] [CrossRef]
- Pang, J.; Wang, W.; Zhou, C. Microstructure Evolution and Oxidation Behavior of B Modified MoSi2 Coating on Nb–Si Based Alloys. Corros. Sci. 2016, 105, 1–7. [Google Scholar] [CrossRef]
- Yoshimi, K.; Nakatani, S.; Suda, T.; Hanada, S.; Habazaki, H. Oxidation Behavior of Mo5SiB2-Based Alloy at Elevated Temperatures. Intermetallics 2002, 10, 407–414. [Google Scholar] [CrossRef]
- Koller, C.M.; Marihart, H.; Bolvardi, H.; Kolozsvári, S.; Mayrhofer, P.H. Structure, Phase Evolution, and Mechanical Properties of DC, Pulsed DC, and High Power Impulse Magnetron Sputtered Ta–N Films. Surf. Coat. Technol. 2018, 347, 304–312. [Google Scholar] [CrossRef]
- Engwall, A.M.; Shin, S.J.; Bae, J.; Wang, Y.M. Enhanced Properties of Tungsten Films by High-Power Impulse Magnetron Sputtering. Surf. Coat. Technol. 2019, 363, 191–197. [Google Scholar] [CrossRef]
- He, J.; Guo, X.; Qiao, Y.; Luo, F. A Novel Zr-Y Modified Silicide Coating on Nb-Si Based Alloys as Protection against Oxidation and Hot Corrosion. Corros. Sci. 2020, 177, 108948. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sytchenko, A.D.; Potanin, A.Y.; Vorotilo, S.A.; Levashov, E.A. Mechanical Properties and Oxidation Resistance of Mo-Si-B and Mo-Hf-Si-B Coatings Obtained by Magnetron Sputtering in DC and Pulsed DC Modes. Surf. Coat. Technol. 2020, 403, 126373. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Y.; Liang, W.; Miao, Q.; Zhou, S.; Sun, J.; Qi, Y.; Gao, X.; Song, Y.; Ogawa, K. Effect of the Y2O3 Amount on the Oxidation Behavior of ZrB2-SiC-Based Coatings for Carbon/Carbon Composites. J. Eur. Ceram. Soc. 2022, 42, 4770–4782. [Google Scholar] [CrossRef]
Coating | Mode | SY, cm2 | Elemental Composition, at.% | Thickness, µm | Growth Rate, nm/min | ||||
---|---|---|---|---|---|---|---|---|---|
Mo | Si | B | Y | Zr | |||||
Mo-Si-B | DCMS | 0 | 24 | 68 | 8 | 0 | 0 | 7.3 | 183 |
Mo-Si-B | HIPIMS | 0 | 22 | 70 | 8 | 0 | 0 | 3.5 | 88 |
Mo-Y-Si-B | DCMS | 10 | 30 | 58 | 5 | 7 | 0 | 6.4 | 160 |
Mo-Y-Si-B | HIPIMS | 10 | 24 | 62 | 7 | 7 | 0 | 6.2 | 155 |
Mo-Zr-Y-Si-B | HIPIMS | 5 | 14 | 52 | 22 | 3 | 9 | 3.2 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sytchenko, A.D.; Loginov, P.A.; Nozhkina, A.V.; Levashov, E.A.; Kiryukhantsev-Korneev, P.V. Structure and Oxidation Resistance of Mo-Y-Zr-Si-B Coatings Deposited by DCMS and HIPIMS Methods Using Mosaic Targets. J. Compos. Sci. 2023, 7, 185. https://doi.org/10.3390/jcs7050185
Sytchenko AD, Loginov PA, Nozhkina AV, Levashov EA, Kiryukhantsev-Korneev PV. Structure and Oxidation Resistance of Mo-Y-Zr-Si-B Coatings Deposited by DCMS and HIPIMS Methods Using Mosaic Targets. Journal of Composites Science. 2023; 7(5):185. https://doi.org/10.3390/jcs7050185
Chicago/Turabian StyleSytchenko, Alina D., Pavel A. Loginov, Alla V. Nozhkina, Evgeny A. Levashov, and Philipp V. Kiryukhantsev-Korneev. 2023. "Structure and Oxidation Resistance of Mo-Y-Zr-Si-B Coatings Deposited by DCMS and HIPIMS Methods Using Mosaic Targets" Journal of Composites Science 7, no. 5: 185. https://doi.org/10.3390/jcs7050185
APA StyleSytchenko, A. D., Loginov, P. A., Nozhkina, A. V., Levashov, E. A., & Kiryukhantsev-Korneev, P. V. (2023). Structure and Oxidation Resistance of Mo-Y-Zr-Si-B Coatings Deposited by DCMS and HIPIMS Methods Using Mosaic Targets. Journal of Composites Science, 7(5), 185. https://doi.org/10.3390/jcs7050185