Estimation of Aboveground Biomass Stock in Tropical Savannas Using Photogrammetric Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Forest Inventory
2.3. Aboveground Estimates (AGB)
2.4. Overflight with Remotely Piloted Aircraft (RPA)
2.5. Digital Terrain Model (DTM) Validation
2.6. Adjustment and Validation of the Mathematical Model
3. Results
3.1. Digital Terrain Model (DTM) Validation
3.2. Forest Inventories
3.3. AGB Model Selection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Archibald, S.; Bond, W.J.; Hoffmann, W.; Lehmann, C.; Staver, C.; Stevens, N. Distribution and Determinants of Savannas. In Savanna Woody Plants and Large Herbivores; Scogings, P.F., Sankaran, M., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 1–24. [Google Scholar]
- Beerling, D.J.; Osborne, C.P. The Origin of the Savanna Biome. Glob. Chang. Biol. 2006, 12, 2023–2031. [Google Scholar] [CrossRef]
- Bond, W.J.; Keeley, J.E. Fire as a Global “Herbivore”: The Ecology and Evolution of Flammable Ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Eiten, G. The Cerrado Vegetation of Brazil. Bot. Rev. 1972, 38, 201–341. [Google Scholar] [CrossRef]
- Ribeiro, J.F.; Walter, B.M.T. Fitofisionomias Do Bioma Cerrado. In Cerrado: Ambiente e Flora; Sano, S.M., Almeida, S.P., Eds.; Empresa Brasileira de Agropecuária—EMBRAPA Cerrados: Planaltina, Brazil, 1998; pp. 89–166. [Google Scholar]
- Lahsen, M.; Bustamante, M.M.C.; Dalla-Nora, E.L. Undervaluing and Overexploiting the Brazilian Cerrado at Our Peril. Environment 2016, 58, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Strassburg, B.B.N.; Brooks, T.; Feltran-Barbieri, R.; Iribarrem, A.; Crouzeilles, R.; Loyola, R.; Latawiec, A.E.; Oliveira Filho, F.J.B.; De Scaramuzza, C.A.M.; Scarano, F.R.; et al. Moment of Truth for the Cerrado Hotspot. Nat. Ecol. Evol. 2017, 1, 99. [Google Scholar] [CrossRef] [PubMed]
- Temesgen, H.; Affleck, D.; Poudel, K.; Gray, A.; Sessions, J. A Review of the Challenges and Opportunities in Estimating above Ground Forest Biomass Using Tree-Level Models. Scand. J. For. Res. 2015, 30, 326–335. [Google Scholar] [CrossRef]
- Bonini, I.; Hur Marimon-Junior, B.; Matricardi, E.; Phillips, O.; Petter, F.; Oliveira, B.; Marimon, B.S. Collapse of Ecosystem Carbon Stocks Due to Forest Conversion to Soybean Plantations at the Amazon-Cerrado Transition. For. Ecol. Manag. 2018, 414, 64–73. [Google Scholar] [CrossRef]
- Rezende, A.V.; Do Vale, A.T.; Sanquetta, C.R.; Figueiredo Filho, A.; Felfili, J.M. Comparação de Modelos Matemáticos Para Estimativa Do Volume, Biomassa e Estoque de Carbono Da Vegetação Lenhosa de Um Cerrado Sensu Stricto Em Brasília, DF. Sci. For. 2006, 71, 65–76. [Google Scholar]
- Guimarães, N.; Pádua, L.; Marques, P.; Silva, N.; Peres, E.; Sousa, J.J. Forestry Remote Sensing from Unmanned Aerial Vehicles: A Review Focusing on the Data, Processing and Potentialities. Remote Sens. 2020, 12, 1046. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Shao, G. Drone Remote Sensing for Forestry Research and Practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
- Levick, S.R.; Whiteside, T.; Loewensteiner, D.A.; Rudge, M.; Bartolo, R. Leveraging Tls as a Calibration and Validation Tool for Mls and Uls Mapping of Savanna Structure and Biomass at Landscape-Scales. Remote Sens. 2021, 13, 257. [Google Scholar] [CrossRef]
- Bazzo, C.O.G.; Kamali, B.; Hütt, C.; Bareth, G.; Gaiser, T. A Review of Estimation Methods for Aboveground Biomass in Grasslands Using UAV. Remote Sens. 2023, 15, 639. [Google Scholar] [CrossRef]
- González-Jaramillo, V.; Fries, A.; Bendix, J. AGB Estimation in a Tropical Mountain Forest (TMF) by Means of RGB and Multispectral Images Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2019, 11, 1413. [Google Scholar] [CrossRef] [Green Version]
- Mlambo, R.; Woodhouse, I.H.; Gerard, F.; Anderson, K. Structure from Motion (SfM) Photogrammetry with Drone Data: A Low Cost Method for Monitoring Greenhouse Gas Emissions from Forests in Developing Countries. Forests 2017, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Batistoti, J.; Marcato, J.; Ítavo, L.; Matsubara, E.; Gomes, E.; Oliveira, B.; Souza, M.; Siqueira, H.; Filho, G.S.; Akiyama, T.; et al. Estimating Pasture Biomass and Canopy Height in Brazilian Savanna Using UAV Photogrammetry. Remote Sens. 2019, 11, 2447. [Google Scholar] [CrossRef] [Green Version]
- Puliti, S.; Ørka, H.O.; Gobakken, T.; Næsset, E. Inventory of Small Forest Areas Using an Unmanned Aerial System. Remote Sens. 2015, 7, 9632–9654. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Avtar, R.; Prathiba, A.P.; Mishra, P.K.; Tiwari, A.; Sharma, S.K.; Singh, C.H.; Chandra Yadav, B.; Jain, K. Uncrewed Aerial Systems in Water Resource Management and Monitoring: A Review of Sensors, Applications, Software, and Issues. Adv. Civ. Eng. 2023, 2023, 3544724. [Google Scholar] [CrossRef]
- Almeida, A.; Gonçalves, F.; Silva, G.; Souza, R.; Treuhaft, R.; Santos, W.; Loureiro, D.; Fernandes, M. Estimating Structure and Biomass of a Secondary Atlantic Forest in Brazil Using Fourier Transforms of Vertical Profiles Derived from UAV Photogrammetry Point Clouds. Remote Sens. 2020, 12, 3560. [Google Scholar] [CrossRef]
- Hoffrén, R.; Lamelas, M.T.; de la Riva, J. UAV-Derived Photogrammetric Point Clouds and Multispectral Indices for Fuel Estimation in Mediterranean Forests. Remote Sens. Appl. Soc. Environ. 2023, 31, 100997. [Google Scholar] [CrossRef]
- Crespo-Peremarch, P.; Torralba, J.; Carbonell-Rivera, J.P.; Ruiz, L.A. Comparing the Generation of DTM in a Forest Ecosystem Using TLS, ALS and UAV-DAP, and Different Software Tools. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 575–582. [Google Scholar] [CrossRef]
- d’Oliveira, M.V.N.; Figueiredo, E.O.; de Almeida, D.R.A.; Oliveira, L.C.; Silva, C.A.; Nelson, B.W.; da Cunha, R.M.; de Almeida Papa, D.; Stark, S.C.; Valbuena, R. Impacts of Selective Logging on Amazon Forest Canopy Structure and Biomass with a LiDAR and Photogrammetric Survey Sequence. For. Ecol. Manag. 2021, 500, 119648. [Google Scholar] [CrossRef]
- Karpina, M.; Jarzabek-Rychard, M.; Tymków, P.; Borkowski, A. Uav-Based Automatic Tree Growth Measurement for Biomass Estimation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 685–688. [Google Scholar] [CrossRef] [Green Version]
- Bispo, P.C.; Rodríguez-Veiga, P.; Zimbres, B.; do Couto de Miranda, S.; Giusti Cezare, C.H.; Fleming, S.; Baldacchino, F.; Louis, V.; Rains, D.; Garcia, M.; et al. Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach. Remote Sens. 2020, 12, 2685. [Google Scholar] [CrossRef]
- da Costa, M.B.T.; Silva, C.A.; Broadbent, E.N.; Leite, R.V.; Mohan, M.; Liesenberg, V.; Stoddart, J.; do Amaral, C.H.; de Almeida, D.R.A.; da Silva, A.L.; et al. Beyond Trees: Mapping Total Aboveground Biomass Density in the Brazilian Savanna Using High-Density UAV-Lidar Data. For. Ecol. Manag. 2021, 491, 119155. [Google Scholar] [CrossRef]
- Bossoukpe, M.; Faye, E.; Ndiaye, O.; Diatta, S.; Diatta, O.; Diouf, A.A.; Dendoncker, M.; Assouma, M.H.; Taugourdeau, S. Low-Cost Drones Help Measure Tree Characteristics in the Sahelian Savanna. J. Arid Environ. 2021, 187, 104449. [Google Scholar] [CrossRef]
- Dutra, A.C.; Breunig, F.M.; Cassol, H.L.G.; de Oliveira, M.T.; Hoffmann, T.B.; Arai, E.; Duarte, V.; Shimabukuro, Y.E. Brazilian Savanna Height Estimation Using UAV Photogrammetry. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5945–5948. [Google Scholar]
- Ferreira, M.E.; Alves, L.R.; Albuquerque, R.W.; Broadbent, E.; De Almeida, D.R.A.; Avino, F.S.; Cezare, C.H.G.; Zambrano, A.M.A.; Wilkinson, B.; Oliveira-Da-Costa, M. Monitoring the Brazilian Savanna with Lidar and RGB Sensors Onboard Remotely Piloted Aircraft Systems. In Proceedings of the IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9240–9243. [Google Scholar] [CrossRef]
- Sano, S.M.; de Almeida, S.P.; Ribeiro, J.F. Cerrado: Ecologia e Flora, 1st ed.; Embrapa Cerrados: Planaltina, Brazil, 2008; Volume 1. [Google Scholar]
- Maia, J.M.F.; Baptista, G.M.M. Clima. In Águas Emendadas; Fonseca, F.O., Ed.; Secretaria de Desenvolvimento Urbano e Meio Ambiente do Distrito Federal: Seduma, Brazil, 2008; pp. 101–109. [Google Scholar]
- Lacerda, M.P.C. Solos. In Águas Emendadas; Fonseca, F.O., Ed.; Secretaria de Desenvolvimento Urbano e Meio Ambiente do Distrito Federal: Seduma, Brazil, 2008; pp. 140–147. [Google Scholar]
- Rezende, A.V.; Papa, D.D.A. Revegetação Natural de Áreas Antropizadas. In Águas Emendadas; Fonseca, F.O., Ed.; Secretaria de Desenvolvimento Urbano e Meio Ambiente do Distrito Federal: Seduma, Brazil, 2008; pp. 199–206. [Google Scholar]
- de Azevedo, G.B.; Rezende, A.V.; de Oliveira Sousa Azevedo, G.T.; Miguel, E.P.; de Gois Aquino, F.; Bruzinga, J.S.C.; de Oliveira, L.S.C.; Pereira, R.S.; Teodoro, P.E. Woody Biomass Accumulation in a Cerrado of Central Brazil Monitored for 27 Years after the Implementation of Silvicultural Systems. For. Ecol. Manag. 2020, 455, 10. [Google Scholar] [CrossRef]
- Pix4D. Pix4Dmapper (version 4.1). 2017; Windows. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Küng, O.; Strecha, C.; Beyeler, A.; Zufferey, J.-C.; Floreano, D.; Fua, P.; Gervaix, F. The Accuracy of Automatic Photogrammetric Techniques on Ultra-Light UAV Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII-1/C22, 125–130. [Google Scholar] [CrossRef] [Green Version]
- d’Oliveira, M.V.N.; Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.E. Estimating Forest Biomass and Identifying Low-Intensity Logging Areas Using Airborne Scanning Lidar in Antimary State Forest, Acre State, Western Brazilian Amazon. Remote Sens. Environ. 2012, 124, 479–491. [Google Scholar] [CrossRef]
- GTR Processor, version 2.91; Windows; EFFIGIS: Montreal, QC, Canada, 2014.
- ArcGIS, version 10.8; Windows; ESRI: Redlands, CA, USA, 2019.
- McGaughey, R.J. FUSION/LDV: Software for LiDAR Data Analysis and Visualization; USDA Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 2014. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 1998; ISBN 9780471170822. [Google Scholar]
- Wong, T.-T.; Yeh, P.-Y. Reliable Accuracy Estimates from k -Fold Cross Validation. IEEE Trans. Knowl. Data Eng. 2020, 32, 1586–1594. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Figueiredo, E.O.; d’Oliveira, M.V.N.; Braz, E.M.; de Almeida Papa, D.; Fearnside, P.M. LIDAR-Based Estimation of Bole Biomass for Precision Management of an Amazonian Forest: Comparisons of Ground-Based and Remotely Sensed Estimates. Remote Sens. Environ. 2016, 187, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Gwenzi, D.; Lefsky, M.A. Modeling Canopy Height in a Savanna Ecosystem Using Spaceborne Lidar Waveforms. Remote Sens. Environ. 2014, 154, 338–344. [Google Scholar] [CrossRef]
- Dandois, J.P.; Ellis, E.C. High Spatial Resolution Three-Dimensional Mapping of Vegetation Spectral Dynamics Using Computer Vision. Remote Sens. Environ. 2013, 136, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Papa, D.D.A. Impacto Do Manejo de Precisão Em Florestas Tropicais. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2018; 112p. [Google Scholar]
- Lefsky, M.A. A Global Forest Canopy Height Map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Zimbres, B.; Shimbo, J.; Bustamante, M.; Levick, S.; Miranda, S.; Roitman, I.; Silvério, D.; Gomes, L.; Fagg, C.; Alencar, A. Savanna Vegetation Structure in the Brazilian Cerrado Allows for the Accurate Estimation of Aboveground Biomass Using Terrestrial Laser Scanning. For. Ecol. Manag. 2020, 458, 117798. [Google Scholar] [CrossRef]
- Oldeland, J.; Große-Stoltenberg, A.; Naftal, L.; Strohbach, B.J. The Potential of UAV Derived Image Features for Discriminating Savannah Tree Species. In The Roles of Remote Sensing in Nature Conservation; Springer: Cham, Switzerland, 2017; pp. 183–201. ISBN 9783319643328. [Google Scholar]
- Valbuena, R.; O’Connor, B.; Zellweger, F.; Simonson, W.; Vihervaara, P.; Maltamo, M.; Silva, C.A.; Almeida, D.R.A.; Danks, F.; Morsdorf, F.; et al. Standardizing Ecosystem Morphological Traits from 3D Information Sources. Trends Ecol. Evol. 2020, 35, 656–667. [Google Scholar] [CrossRef]
- IPCC. Agriculture, Forestry and Other Land Use. In IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Prepared by the National Greenhouse Gas Inventories Programme; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006; pp. 1–83. [Google Scholar]
- Bustamante, M.M.C.; Silva, J.S.O.; Cantinho, R.Z.; Shimbo, J.Z.; Oliveira, P.V.C.; Santos, M.M.O.; Ometto, J.P.H.B.; Cruz, M.R.; Mello, T.R.B.; Godiva, D.; et al. Engagement of Scientific Community and Transparency in C Accounting: The Brazilian Case for Anthropogenic Greenhouse Gas Emissions from Land Use, Land-Use Change and Forestry. Environ. Res. Lett. 2018, 13, 11. [Google Scholar] [CrossRef]
FAL | ESECAE Anthropized Area | ESECAE Preserved Area | |
---|---|---|---|
Mean diameter (cm) | 7.7 ± 2.8 | 8.1± 3.6 | 10.5 ± 5.8 |
Mean height (m) | 3.1 ± 1.2 | 3.3 ± 1.2 | 4.1 ± 1.8 |
Total species richness | 74 | 19 | 67 |
Maximum Height |
Average Height |
Height Mode |
Median heights |
Height Standard Deviation |
Height Variance |
Height variation coefficient |
Mean heights from 1st to 4th quartile |
Coefficient of variation, kurtosis, and skewness of the mean heights of the quartiles |
Mean heights of the 1st, 5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, and 99th percentiles |
Quadratic mean height |
Mean cubic height |
Canopy cover ratio |
Descriptive Statistics | Observed AGB (Mg ha−1) | Density (N ha−1) |
---|---|---|
Minimum | 0.10 | 20 |
Maximum | 47.6 | 3020 |
Mean | 18.3 | 1502.4 |
CV (%) | 72.9 | 60.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Queiroz, R.F.P.; d’Oliveira, M.V.N.; Rezende, A.V.; de Alencar, P.A.L. Estimation of Aboveground Biomass Stock in Tropical Savannas Using Photogrammetric Imaging. Drones 2023, 7, 493. https://doi.org/10.3390/drones7080493
de Queiroz RFP, d’Oliveira MVN, Rezende AV, de Alencar PAL. Estimation of Aboveground Biomass Stock in Tropical Savannas Using Photogrammetric Imaging. Drones. 2023; 7(8):493. https://doi.org/10.3390/drones7080493
Chicago/Turabian Stylede Queiroz, Roberta Franco Pereira, Marcus Vinicio Neves d’Oliveira, Alba Valéria Rezende, and Paola Aires Lócio de Alencar. 2023. "Estimation of Aboveground Biomass Stock in Tropical Savannas Using Photogrammetric Imaging" Drones 7, no. 8: 493. https://doi.org/10.3390/drones7080493
APA Stylede Queiroz, R. F. P., d’Oliveira, M. V. N., Rezende, A. V., & de Alencar, P. A. L. (2023). Estimation of Aboveground Biomass Stock in Tropical Savannas Using Photogrammetric Imaging. Drones, 7(8), 493. https://doi.org/10.3390/drones7080493