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Abstract: The present investigation evaluates the accuracy of estimating above-ground biomass (AGB)
by means of two different sensors installed onboard an unmanned aerial vehicle (UAV) platform
(DJI Inspire I) because the high costs of very high-resolution imagery provided by satellites or light
detection and ranging (LiDAR) sensors often impede AGB estimation and the determination of
other vegetation parameters. The sensors utilized included an RGB camera (ZENMUSE X3) and a
multispectral camera (Parrot Sequoia), whose images were used for AGB estimation in a natural
tropical mountain forest (TMF) in Southern Ecuador. The total area covered by the sensors included
80 ha at lower elevations characterized by a fast-changing topography and different vegetation covers.
From the total area, a core study site of 24 ha was selected for AGB calculation, applying two different
methods. The first method used the RGB images and applied the structure for motion (SfM) process to
generate point clouds for a subsequent individual tree classification. Per the classification at tree level,
tree height (H) and diameter at breast height (DBH) could be determined, which are necessary input
parameters to calculate AGB (Mg ha−1) by means of a specific allometric equation for wet forests.
The second method used the multispectral images to calculate the normalized difference vegetation
index (NDVI), which is the basis for AGB estimation applying an equation for tropical evergreen
forests. The obtained results were validated against a previous AGB estimation for the same area
using LiDAR data. The study found two major results: (i) The NDVI-based AGB estimates obtained
by multispectral drone imagery were less accurate due to the saturation effect in dense tropical forests,
(ii) the photogrammetric approach using RGB images provided reliable AGB estimates comparable
to expensive LiDAR surveys (R2: 0.85). However, the latter is only possible if an auxiliary digital
terrain model (DTM) in very high resolution is available because in dense natural forests the terrain
surface (DTM) is hardly detectable by passive sensors due to the canopy layer, which impedes
ground detection.

Keywords: forest AGB; UAV; RGB data; multispectral data

1. Introduction

Accurate information about forest cover, land use and above-ground biomass (AGB) are critical
parameters for many environmental studies as well as for conservation initiatives concerning the
mitigation of global warming, such as REDD+ (Reducing emissions from deforestation and forest
degradation and the role of conservation, sustainable management of forests and enhancement of forest
carbon stocks in developing countries) [1,2]. By means of such data and their temporal development,

Remote Sens. 2019, 11, 1413; doi:10.3390/rs11121413 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-2150-7690
https://orcid.org/0000-0001-5357-5682
https://orcid.org/0000-0001-6559-2033
http://www.mdpi.com/2072-4292/11/12/1413?type=check_update&version=1
http://dx.doi.org/10.3390/rs11121413
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 1413 2 of 22

the most vulnerable regions can be determined, and areas which deserve protection can be identified.
In particular, natural forest cover is of utmost concern because it stores and sequesters large amounts
of atmospheric carbon (nearly 30% of the cumulative anthropogenic emissions [3–6]. However, the
high deforestation rates observed in tropical countries complicate mitigation actions and efforts.
Furthermore, affected areas become sources of additional greenhouse gas (GHG) emissions [7,8],
amplifying the global change [9].

The highest deforestation rates in South America were estimated in Ecuador [7,10], where
specifically the tropical mountain forest (TMF) has been and is still affected for several reasons, such
as population growth, economic crises, and planning processes [11,12]. During the last few decades,
human activities changed the natural vegetation cover [13,14], mostly by slash-and-burn activities to
produce pasture and agricultural land [15]. Therefore, carbon storage or AGB has changed, caused
additionally by the extraction of desirable timber species, which is why natural forest cover is often
disturbed or fragmented [16,17]. The AGB stock mostly consists of wood and branches of the different
species (70% to 90% of AGB) [18,19] in which large or dominant trees (~25–30 m) contain more than
75% of total carbon stored [20]. Therefore, the determination of actual forest cover and AGB in high
resolution is necessary to provide accurate data about existing carbon storage, which is the basis
for future scenarios of potential C-sequestration or emission under environmental changes in the
future [21].

To fulfill this requirement, information in very high resolution (cm) is necessary, which is especially
challenging in TMF due to the high biodiversity, difficulties in access, and the fast-changing forest
structure [22,23]. Remote sensing platforms provide a solution [24–27] because this technology offers
information in very high resolutions and is independent of topographic conditions [28,29]. The best
remote sensing alternative is “light detection and ranging” (LiDAR) [30], a laser technology with
an extremely high resolution, which provides 3D data suitable for a wide range of applications,
including AGB estimation [31–33]. However, this technology is expensive and generally inaccessible
for developing countries [8], requiring that other more cost-effective platforms must be considered.

Optical satellite data in very high spatial resolution can also provide the required information
(e.g., platforms: WorldView, GeoEye, IKONOS, QuickBird, Pleiades) [34], but these sensors are sensitive
to weather conditions (e.g., cloudiness [35]), besides the elevated costs for very high-resolution image
acquisition [36]. Nonetheless, coarse to moderate resolution satellite images facilitate temporal
information and historical data, at least for the last few decades (NOAA-AVHRR, Aster, MODIS or
Landsat) [37–39]. This information can be used for forest classification, forest cover determination, and
deforestation rate estimation [25,40] but hardly for accurate local AGB calculation and natural TMF
monitoring due to high cloudiness and the fast-changing topography in tropical high mountains [41].

A third, more accessible technology is drones or unmanned aerial vehicles (UAV), which allow
for the detection of surface data in very high spatial and temporal resolution [42–44]. The available
sensors can provide 3D and multispectral information [4,45], which permit AGB estimation as well as
ecosystem monitoring at small scale [28]. However, the range of UAVs is limited due to their battery
capacity. At the same time, the image resolution as well as surface coverage depend on UAV flight
height (ground sample distance—GSD) [2]. Nonetheless, UAVs have demonstrated their potential to
complement or fill the gaps in more expensive surveys, like LiDAR [45,46]. As Weber and Lerch [47]
stated, the accuracy level of photogrammetric products generated by means of UAV data is acceptable
for relatively small areas where high resolution information is required (centimeter level).

According to our knowledge, AGB estimation by means of UAV data has not been applied in
remote natural TMF. Thus, this study applies two different methods for AGB estimation in a remote
TMF ecosystem in Southern Ecuador, using a UAV (DJI Inspire 1) [48] equipped with an RGB camera
and a multispectral senor. On the one hand, the RGB data were utilized to obtain 3D point-clouds [45]
from which a digital terrain model (DTM), a digital surface model (DSM), as well as a canopy height
model (CHM) were generated and an individual tree classification executed. By means of the individual
tree parameters, the specific allometric equation for tropical wet forest proposed by Chave et al. [49] was
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applied to estimate the AGB (Mg ha−1). On the other hand, the Red and NIR bands of the multispectral
sensor were used to calculate the normalized difference vegetation index (NDVI), which is the basis for
AGB estimation applying the equation for evergreen forest proposed by Das and Singh [50]. Finally,
the results of the two methods were evaluated comparing the obtained UAV AGB with an independent
reference AGB dataset derived from LiDAR data for the same area [8].

2. Materials and Methods

2.1. Study Area

The study was executed in a natural TMF in the eastern escarpment of the South Ecuadorian
Andes, specifically inside the San Francisco watershed, where the research station “Estación Científica
San Francisco” (ECSF: Lat. 3◦58′18′’ S, long. 79◦4′45′’ W) is located. Altitudes range from 1600 m
above sea level at the river outlet to 3200 m above sea level at the highest mountain peaks (Figure 1).
The San Francisco watershed has an extension of ~85 km2 and is a hotspot for biodiversity due to its
extraordinary variety of flora and fauna [51,52]. The natural TMF covers the slopes from the valley
bottom up to the tree line (~2700 m above sea level) [12,53] and can be divided into lower slope (ravine)
forest and upper slope (ridge) forest [54]. This natural forest structure is related to topography, climatic
conditions, and prevailing soil types [55,56]. The ravine forest is characterized by lower stem density
but higher basal areas (diameters) and canopy heights compared to the ridge forest, which also contains
fewer tree species [8,22]. The selected study site has an area of 80 ha and is located at lower elevations
(1700 m above sea level to 2200 m above sea level), including ravine and ridge forest areas (Figure 1).
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Figure 1. (a) Digital elevation model (DEM) of Ecuador, and (b) DEM of the San Francisco catchment
including the study area.

The climate within the study area is per-humid with marked altitudinal gradients in air temperature,
air humidity [57,58], cloudiness [59], rainfall [60], and wind conditions [56]. Mean annual air
temperature ranges from 19.4 ◦C at the valley bottom to 9.4 ◦C at the mountain tops, whereas average
relative humidity varies between 70% at the valley bottom and at open sites to nearly 100% at the
mountain ridges and inside the TMF. Precipitation shows a clear annual cycle with a main rainy season
in austral winter (between May and September) and a relative dry season in austral summer (between
November and February). Wind direction is predominately from the east due to the tropical easterlies,
reaching average monthly velocities up to 15.5 m s−1 at the ridges in austral winter [61].
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2.2. Equipment

To estimate the AGB in the natural TMF, the UAV DJI Inspire 1 [48] was used, which was equipped
with an RGB camera (ZENMUSE X3) and a multispectral camera (Parrot Sequoia) [62].

2.2.1. DJI Inspire 1

The UAV DJI Inspire 1 is a multi-rotor drone with 4 electric motors (quadcopter, Figure 2) that
includes a remote controller that operates up to 2 km (radio) under unobstructed environmental and
undisturbed meteorological conditions [48]. The maximum speed of the drone is 22 m s−1, and its
maximum operation altitude is 4500 m above sea level. Factory built, the DJI Inspire 1 is equipped
with the RGB ZENMUSE X3 camera with a resolution of 12 megapixels, which also includes an
integrated gimbal system that provides stability and avoids distortion and blurring. The flight time
varies with respect to payload, altitude above sea level, and weather conditions (mainly wind speed)
but generally lies between 12–18 min. By considering the additional weight of a multispectral sensor
and its external battery (approximately 250 g), an average flight time of about 10 min could be achieved
for the mountainous environment in the study area.
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and the multi-spectral camera Parrot Sequoia.

2.2.2. Parrot Sequoia

The Parrot Sequoia camera is a multispectral sensor [62] that allows for the capture of imagery at
4 specific bands within the visible and infrared electromagnetic spectrum: Green (550 nm), red (660
nm), red edge (735 nm), and near infrared (790 nm). Furthermore, the camera includes a sunshine
module that automatically calibrates the received images to compensate for the variability in sunlight
conditions during flight as well as during different campaigns [63]. The specific bands of the Parrot
Sequoia camera are similar to multispectral sensors onboard Landsat and NOAA-AVHRR satellites,
allowing for comparable investigations to be conducted [62].
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3. Methodology

3.1. Flight Planning and Data Acquisition

Depending on the size of study area, specific characteristics of the employed UAV must be
considered (especially payload and resulting flight time) to determine the area covered by one single
flight as well as the number of flights necessary to cover the whole area of interest. For the present
research, a core site of 24 ha was selected, located at lower elevations in the San Francisco catchment,
including parts of the valley bottom (river), side valleys, and ridges covered by natural TMF in which
small gaps of natural succession (ancient landslides, grassland, and scrubs) are also present (Figure 3).
To ensure complete coverage of the core site, the limits for data acquisition (vertical photographs) were
extended at all borders (total area of coverage: 80 ha).

The flight characteristics were configured by means of the free software Precision Flight [64], an
application that runs on an Android device that afterwards automatically executes the planned survey.
The flight path was designed in an east-west direction with a nominal speed of 9 m s−1 to cover the
whole area (80 ha) by two flights of approximately 10 min. The data were taken at a flight height of 300
m above the starting point with 90% side and forward overlap of the images, as recommended by the
Pix4D documentation for locations with fast-changing topography and forests with dense canopies, to
obtain enough points for individual image matching [65].

To improve the accuracy of the obtained images (coordinates X, Y and Z), ground control points
(GCPs, Figure 3) were set within the area of coverage before executing the flights [28,66]. A minimum
of 3 GCPs are necessary to ensure reliable image accuracy, but five to 10 GCPs are more suitable,
particularly for larger areas [67]. It has been proven that a higher number of GCPs do not improve the
final product significantly, nor do they improve the image accuracy [68], so for this reason six GCPs
were set for the present study. The GCPs were located at flat open sites inside the total area (80 ha) to
guarantee easy detection within the images. Therefore, dense canopies, steep slopes, and positions too
close to the borders were avoided because the local topography as well as the camera position modifies
the nadir angles of the different objects [29]. The exact geographical position of the GCPs (Figure 3)
were determined using a GPS Trimble R6 system. Furthermore, the multispectral camera needs a
radiometric calibration target to guarantee reliable values for each individual spectral band. Therefore,
an AirInov target, specifically designed for the Parrot Sequoia camera, was used to calibrate the bands
before flight execution. More information about the target and its application can be found in [63].
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The UAV flights were executed under sunny weather conditions during 26 April 2018, before the
main rainy season started. During the survey, 132 RGB images and 230 multispectral images were
obtained, which resulted in a total raw data size of 8 GB.

3.2. Data Processing

The data processing chain for AGB estimation by means of the RGB and multispectral images is
shown in Figure 4. Both image types were analyzed independently.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 22 
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multispectral imagery (right).

3.2.1. AGB Estimation by Means of RGB Data—Use of Photogrammetry

Allometric equations are widely used for AGB estimation [69–71] because they include forest
structure parameters, such as tree height (H), tree diameter at breast height (DBH), and wood density
(WD). The required information at tree level can be obtained by remote sensed data (H and DBH) and
non-destructive field measurements (H, DBH, and WD), which do not harm the ecosystem [8,72]. For
individual H detection, 3D data (point clouds) are required, which can be derived from expensive LiDAR
surveys [73] but also from RGB data when applying computational photogrammetric techniques [1,74].

To obtain the 3D data, first, the raw data of the ZENMUSE X3 camera were checked and all images
at the beginning and at the end of each individual flight eliminated because these images do not
comply with the established flight characteristics (flight height, image overlap, and pixel resolution).
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The revised dataset included 132 images, which were used to generate an orthophoto (Figure 3) and
a point cloud for the whole study area (Figure 5). The remaining images were processed using the
Pix4D software [65], which uses the structure from motion (SfM) process [75]. This process applies the
principles of traditional stereoscopic photogrammetry in which the horizontal and vertical position
of specific geometrical features are determined using several images of the same object taken under
different viewing angles [74]. This can be done by means of a series of RGB images with a side and
forward overlap of between 60% and 90%. For the present study, an overlap of 90% was fixed to avoid
mismatches during the overlap process of the images. Furthermore, the fast-changing topography
and forest structure in the study area requires a higher overlap to obtain enough points for image
matching [65].
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the individual photos and their overlap. GCPs are shown below.

As Aasen et al. [28] stated, the SfM processing provides a high geometric fidelity if the
obtained/captured images contain the exact geographical position and orientation of the spectral
sensor. These conditions are given for the present study because sensor orientation is implemented
in the ZENMUSE X3 camera (orientation), and the DJI Inspire 1 drone includes an on-board inertial
measurement unit (IMU) sensor receiving GNSS signals (geographical position) [48]. As mentioned
before, to improve the accuracy of the resulting images, six GCPs were set within the study area,
which guarantees reliable image accuracy [76]. The location of the GCPs was introduced in the
photogrammetric process, which identifies the specific GCP in each individual image and merges the
image accordingly. The six GCPs were identified in 120 images, which is why a high geometric fidelity
of the resulting information can be assumed [28,67].

In general, the workflow of the SfM approach consists of three major steps: (i) Feature extraction,
(ii) feature matching, and (iii) reconstruction. Most of the processing time is needed for feature
matching [76]. The software overlaps all available images and generates 3D-point clouds by means of
the different angle views of the individual images [65,76]. Therefore, sufficient GCPs are necessary,
especially in primary forests, to obtain reliable image matching [66]. The obtained point cloud was
reduced to the core study site, located in the center of the investigation area. The Pix4D software also
generates an orthophoto whose resolution depends on flight altitude (here: 300 m above ground). The
programmed flight characteristics resulted in a pixel size (GSD) of about 25 cm for the orthophoto (see
Figure 3) and the 3D point cloud (Figure 5).
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To obtain H and DBH estimates for individual trees, the 3D point cloud was processed according
to the method presented by González-Jaramillo et al. [8]. From the 3D point cloud, a digital terrain
model (DTM) and a digital surface model (DSM) were created, in which the DTM model can be
interchanged with any other DTM in very high resolution available for the study area [77]. The utilized
software (Fusion 3.7) [78] subtracts the DTM from the DSM to obtain a canopy height model (CHM),
which displays the difference between the ground (terrain, bare-earth points) and the highest elevation
returns for each GSD [79]. In this case, the CHM depicts the vegetation height while the Canopy
Maxima method was also applied within a variable-size evaluation window (here: 3 × 3) [80] to
estimate individual H of dominant trees, which represent 70% to 90% of the total AGB of a forest
stand [18,19]. For this study, only dominant trees higher than 5 m with a DBH greater than 10 cm were
considered to calculate the AGB, as Gianico et al. [79] recommended.

The H of the individual trees detected was used to calculate the DBH based on the height-diameter
relationship equation established by González-Jaramillo et al. [8] for the same study area (Equation (1)),

DBH = e(
Ln(H)−0.85

0.56 ) (1)

where DBH is the diameter at breast height in cm, and H is the estimated height of the tree (m), obtained
from the point cloud.

To estimate the AGB (Mg ha−1), mean WD from a previous investigation was used, which was
obtained by means of field measurements taken in the study area (0.59 g cm−3) [81]. The applied AGB
equation at tree level corresponds to Chave et al. [49], who suggested a specific equation for tropical
wet forest, which can be written as follows (Equation (2)),

AGBtree = exp
(
−2.557 + 0.940 × ln

(
WD ∗D2

∗H
))
= 0.0776×

(
WD ∗D2

∗H
)0.940

(2)

where AGBtree corresponds to the AGB of a specific tree (Mg), WD represents the wood density average
(gr cm−3), H is the obtained height of each detected tree (m) and D is the estimated DBH (cm) obtained
by means of Equation (1). The product applying Equation (2) is the AGB per individual tree. Finally, a
grid layer with a 1 ha × 1 ha resolution was overlaid to determine AGB per hectare, where all individual
tree AGB was added up for each grid cell [8].

3.2.2. AGB Estimation Using Multispectral Data

To estimate AGB by means of the multispectral data obtained from the Parrot Sequoia camera,
the equation proposed by Das and Singh [50] was applied. They presented a specific equation for
different tropical forest types. The selected equation corresponds to tropical evergreen forest, which is
comparable to the forest type presented in the study area. The raw data with a spatial resolution of
25 cm (multispectral imagery) were processed using the Pix4D software [65] which allows radiometric
and geometric corrections of each spectral band. As mentioned before, the radiometric calibration
was done using an AirInov target [63] before executing the flights. The specific albedo values were
provided by the manufacturer [62], which allowed for the correction of the reflectivity values, ranging
between 0 and 100.

To distinguish between forest, bare soil, and shrubs in the corrected images, first, a false color
composite was generated. Therefore, the spectral bands NIR, RED, and GREEN were used [82],
which highlight areas with vegetation in red, whereas other ground covers are shown in a different
color. The false color composite was the basis for a non-supervised classification, using the Iso
Cluster Unsupervised Classification tool available in ArcGis 10.5.1. [83,84]. This tool evaluates the
whole dataset and classifies the vegetation into different categories (here: Herbs/bare soil, scrubland,
and forest).

Then, the normalized difference vegetation index (NDVI) [85] was calculated, which expresses
the vigorousness of the vegetation. The NDVI is directly related to the photosynthetic capacity and
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therefore to the energy absorption of the vegetation. Its magnitude ranges between −1 and 1, in
which negative values indicate water bodies, values near 0 bare soils, and positive values vegetation
cover [86]. The NDVI is determined by the ratio of the NIR band (near infrared, 790 nm) and the RED
band (red, 660 nm), expressed in Equation (3),

NDVI =
NIR−RED
NIR + RED

(3)

where NDVI is the normalized difference vegetation index, NIR = near-infrared band, and RED = red
spectral band.

After the NDVI calculation, a regular grid mask of 1 hectare was overlaid, and all 25 cm pixels
within a grid averaged to obtain a mean NDVI value per hectare. Finally, the equation for evergreen
forest proposed by Das and Singh [50] was applied to calculate the AGB (Mg ha−1), which can be
written as follows,

AGB = 324.2×NDVImean + 14.18 (4)

where AGB is the above-ground biomass (Mg ha−1), and NDVImean is the normalized difference
vegetation index, averaged for 1 ha.

3.3. Validation of the RGB and Multispectral AGB Estimations

The two different techniques for AGB estimation (RGB and multispectral data) using a UAV were
validated by means of an independent AGB dataset (Mg ha−1) derived from LiDAR data. The LiDAR
survey was executed in the same study area in 2012, using a Leica Geosystem ALS-50-II CM laser
scanner installed onboard a Eurocopter AS350B2 Ecuriel Helicopter. The resulting point cloud density
was at least 10 pulses per 1 m2 [31], from which a DTM, DSM, and CHM model in a 25 cm x 25 cm
resolution was generated, and the AGB (Mg ha−1) calculated applying an allometric equation [49]. For
more details about the LiDAR-AGB calculation, please refer to González-Jaramillo et al. [8].

The RGB model executed in this study is similar to the LiDAR approach [8], although the RGB
camera is a passive sensor, whereas the LiDAR laser scanner an active sensor. Therefore, the generated
DTM, DSM, CHM and individual tree parameters obtained from the RGB data were compared to the
reference data from LiDAR. The multispectral model is different because the AGB (Mg ha−1) is directly
calculated by means of the equation for tropical evergreen forests proposed by Das and Singh [50],
which is why only the resultant AGB values were compared to the reference LiDAR-AGB.

The accuracy of the obtained results, RGB or multispectral vs. LiDAR, were determined by means
of the coefficient of determination (R2) and the root mean square error (RMSE) [46,87]. The equation
for R2 (Equation (5)) and RMSE (Equation (6)) are written as follows,

R2 =

∑n
i=1(xi − x)2(yi − y)2∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2 (5)

RMSE =

√∑n
i=1(xi − yi)

2

n
(6)

where xi and yi are the estimated and measured values, x and y are the average estimated and measured
values, and n is the total number of existing values with respect to the compared parameters.

4. Results

4.1. AGB Results by Means of RGB Data

By executing the explained photogrammetric processes for the RGB data, an orthophoto (Figure 3)
and a point cloud image were obtained (Figure 5). The orthophoto was used simply for supervision,
while from the point cloud, the horizontal and vertical structure of the TMF at tree level was determined.
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The point cloud image had an average density of 30 points/m2 for the total zone (~80 ha), but zones
with no information were also present, especially near the borders of the flight domain, for which
reason a core area (24 ha) was established to avoid gaps in the information. Furthermore, due to the
dense canopies and the fast-changing topography in the core area, which impede the determination of
bare earth points by means of images of the RGB information, the high resolution DTM (25 cm × 25 cm)
generated from the LiDAR survey (2012) was used to generate the CHM. As Karpina et al. [77] stated,
this interchange is practicable because passive remote sensors cannot detect the terrain surface under
dense canopy layers. Therefore, to generate the CHM, the ancillary LiDAR-DTM was subtracted from
the RGB-DSM. Then, the Canopy Maxima tool of FUSION 3.7 was executed to detect the local maxima
in the CHM, which represents the H of individual trees and their location. A total of 7075 dominant
trees were detected (Figure 6a), and, by means of Equation (1), their individual DBH calculated. To
estimate AGB (Mg ha−1), a grid mask of 1 ha × 1 ha was overlaid and all AGB values of the individual
trees within a grid cell were added up. The resulting AGB map of the core area is shown in Figure 6b.
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Figure 6. (a) Individual AGB values of the dominant trees detected in the core area; (b) Spatial
distribution of AGB obtained from the RGB data.

H varied between 8.50 m to 35.32 m in the core area in which the individual tree distribution
depended on the topographical position. Bigger trees were found in depressions (ravine forest)
because these locations are topographically more protected compared to the ridges (ridge forest),
and trees are generally taller there [22,88]. This is also caused by the prevailing soil types present at
the different locations [53]. In general, the down-slope fluxes accumulate material and nutrients in
the depression [22], which is why soil depth and nutrient concentrations are generally higher there,
supporting the resulting tree growth [22,88]. The ridge forest parts are frequently affected by soil
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erosion processes due to the steeper slopes and harsher climate conditions [56], which lead to shallow
soils and unstable conditions (landslides) at these areas [55], subsequently reducing tree growth.

The DBH ranged between 10.01 cm and 127.39 cm, while distribution also depended on the
topographical positions [54]. In general, the estimated AGB (Mg ha−1) was related to the topographical
position and the specific forest type (ravine or ridge) and ranged between 18.77 Mg ha−1 (open ridge
forest) and 317.77 Mg ha−1 (dense ravine forest), with a mean value of 148.83 Mg ha−1 for the core
study area. In Figure 6, the aforementioned distribution is clearly visible, where higher AGB values
(green and yellow colors) are located inside the side valley and near the valley bottom, whereas lower
AGB values (orange and red colors) are displayed at the ridges or steep slopes, where small vegetation
(shrubs or small trees) or regeneration areas prevail.

4.2. AGB Results by Means of Multispectral Data

By utilizing the multispectral data, a false color composite was generated as well as the individual
NDVI values for each pixel (25 cm) calculated. The false color composite provided the basis for an
unsupervised classification to divide the vegetation cover in herbs/bare soil, scrubland, and forest
(Figure 7a). The vegetation classification was used for visual inspection to verify the calculated NDVI
values corresponding to these vegetation classes. The calculated NDVI map is illustrated in Figure 7b,
displaying generally high values of between 0.38 and 0.86. Only water bodies (river course) showed
negative values, while bare soil’s NDVIs up to 0.20. The remaining land cover units had high positive
values, which indicates vigorous vegetation [40,89]. Nonetheless, the forest distribution is detectable
in the NDVI map, where higher values (dark green) were displayed inside the side valleys and slightly
lower values (light green) at the ridges (Figure 7b). The individual NDVI values were averaged for
each hectare and integrated in Equation (4) to obtain AGB (Mg ha−1).
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The resulting AGB map is illustrated in Figure 8, indicating values between 191.46 MG ha−1 and
252.11 Mg ha−1. The mean value corresponds to 237.21 Mg ha−1. However, due to the generally high
NDVI in the study area (natural TMF), the differences between ravine and ridge forest were indistinct,
which resulted in high AGB values for the whole area.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 22 
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4.3. Validation

The validation was realized by means of the statistic software R-Studio (version 1.1.453) [90].
First, the results obtained from the RGB camera were analyzed, in which the individual generated
models (DTM, DSM, and CHM) were compared to the LiDAR models [8]. The DTM comparison was
made for two transects (Figure 3, yellow lines), one over dense vegetation cover and another over
sparse or non-vegetation sites (Figure 9, red and black lines). It is clearly visible in Figure 9a that the
RGB camera can hardly detect the terrain surface under dense vegetation (differences up to 20 m)
because this passive sensor is not able to penetrate dense canopy layers [91,92]. In contrast, for sparse
or non-vegetated areas (Figure 9b), only small differences between the RGB-DTM and the LiDAR-DTM
were obtained (differences up to 2 m). Therefore, the RGB-DTM generation is largely inaccurate for
natural tropical forests, especially for areas with dense vegetation, where high canopies obstruct the
detection of the terrain surface (RGB-DTM RMSE: ~9 m, Table 1).

In contrast, the DSM comparison for both transects showed good accordance between the RGB
and the LiDAR model because the top of the surface (here: Crown level) can be analyzed by means
of RGB data (Figure 9, green and grey lines). This is confirmed by the statistics (Table 1), which
determined a coefficient of determination (R2) of 0.99 with an RMSE of 3.05 m at very high significance
level <0.001 (p-value). However, differences between dense vegetation (Figure 9a, R2 of 0.98 and a
RMSE of 1.38 m) and less-vegetated sites (Figure 9b, R2 of 0.99 with an RMSE of 0.49 m) were notable,
which is due to the irregular canopy layer in dense natural TMF [22] and the time span between the
LiDAR and UAV survey (vegetation growth).
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By means of the DTM and the DSM, a CHM could be generated, but due to the high errors in the
RGB-DTM, the RGB-CHM error also showed high inaccuracy (RMSE = 8.65 m), and no correlation
between RGB-CHM and LiDAR-CHM could be determined (R2 = 0.18, Table 1). Therefore, as
Karpina et al. [77] suggested, the RGB-DTM was replaced by an accurate DTM in very high resolution
(LiDAR-DTM) to guarantee a reliable CHM generation and a subsequent individual tree classification.
Using the LiDAR-DTM in combination with the RGB-DSM (RGB-CHM*, Table 1), errors were notably
reduced (RMSE = 3.00 m) and a good correlation between the models was obtained (R2 = 0.80).
Therefore, the RGB-CHM* model was used for the individual tree classification to determine H and
DBH for the final AGB estimation.

Table 1. AGB validation comparing RGB models with the LiDAR models.

Approach R2 RMSE (m) p-Value

RGB-DTM vs.
LiDAR-DTM 0.99 8.95 <0.001

RGB-DSM vs.
LiDAR-DSM 0.99 3.05 <0.001

RGB-CHM vs.
LiDAR-CHM 0.18 8.65 <0.001

RGB-CHM* vs.
LiDAR-CHM 0.80 3.00 <0.001

* combination of LiDAR-DTM and RGB-DSM.

Within the core study area, a total of 7075 dominant trees were detected on basis of the RGB-CHM*,
applying the canopy maxima method [80]. In comparison to the LiDAR-CHM in which 7317 trees were
detected for the same area, results were similar (96.69%, Table 2). From the individual tree detection,
H was deviated and DBH of each tree calculated. As shown in Table 2, H and DBH values for the
individual trees were in the same range comparing RGB and LiDAR data, which resulted in similar
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AGB values. However, maximum AGB values were slightly higher for the RGB data, which may be
due to the RMSE of the RGB-DSM (Table 1) or the time span between the surveys (vegetation growth).

Table 2. Calculated H, DBH, and AGB values (RGB above and LiDAR below).

Sensor Tree
Individuals

Height (m) DBH (cm) AGB (Mg/ha)

Min Mean Max Min Mean Max Min Mean Max SD

RGB 7075 8.50 14.66 35.32 10.01 28.08 127.39 18.77 148.66 317.77 83.96

LiDAR 7317 8.50 14.52 36.31 10.01 27.57 133.83 10.01 144.83 291.58 85.45

Furthermore, the RGB results (H, DBH, and AGB) were plotted against the LiDAR results
(Figure 10). Therefore, the deviated H (Figure 10a) and calculated DBH values of all detected trees
from the RGB (7075 individuals) were used and a linear regression analysis executed. The results
showed a good correlation for H (R2 = 0.83) and DBH (R2 = 0.83). AGB amounts of the specific hectares
(24 ha) were also compared, which resulted in a good correlation between RGB-AGB and LiDAR-AGB
(R2 = 0.85, at a significance level p-value < 0.001, Figure 10b).
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Then, the AGB results obtained from the multispectral data were validated against the LiDAR
estimates. In Table 3, the calculated minimum, mean, and maximum AGB values are presented, which
indicate notable differences. The calculated minimum AGB of the multispectral data (191.46 Mg ha−1)
was notably higher, whereas as maximum AGB (252.11 Mg ha−1) was lower than the LiDAR estimates.
The absence of correlation between the multispectral and LiDAR results (p-value > 0.05) was confirmed
by the very low R2 (p-value < 0.01) and the very high RMSE (127.35 m). The large differences were due
to the tendency towards saturation of multispectral sensors for healthy and vigorous vegetation [82],
for which reason, generally, high NDVI values were obtained for the whole area (Figure 7b), which
resulted in similar AGB values for all hectares under study and consequently in unclear forest
structure detection.

Table 3. Calculated AGB from multispectral and LiDAR data.

Sensor Cover (ha)
AGB (Mg/ha)

Min Mean Max SD

Multispectral 24 191.46 237.21 252.11 13.02
LiDAR 24 10.01 144.83 291.58 85.45
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5. Discussion

Regarding the UAV technology used for AGB estimation in this natural TMF in Southern Ecuador,
two main issues could be identified. First, flight time and image resolution are related to topographic
conditions as well as to the payload capacity of the employed UAV, which determine the area covered
by one single flight as well as the final GSD resolution (pixel size). Furthermore, a high overlap of
the individual images is necessary and an adequate number of GCPs must be established [67,68] to
obtain the required image accuracy during the photogrammetric process. The second issue refers
particularly to the RGB images and the 3D point cloud generation. As the study showed, terrain or
ground data (DTM) under dense forest canopies cannot be detected accurately because passive sensors
do not have the capacity to penetrate dense forest canopies [91,92]. However, the methodology can be
applied in managed forest, where gaps are big enough and generally homogeneous, which permits the
detection of the terrain [93]. In dense natural forest, an adequate auxiliary DTM in high resolution
(here: LiDAR-DTM) is necessary to generate a realistic CHM for further analysis [77,94].

Considering the second issue, it could be stated that from the RGB-CHM* the structural parameters
of the forest could be identified, which include the forest type (here: Ravine or ridge) as well as H of
each individual tree detected. Biggest trees were found in the protected ravine TMF parts (valleys
and side valleys) with H up to 35.32 m, similar to González-Jaramillo et al. [8], who used LiDAR
data for individual tree classification (36.31 m, Table 1). The same maximum H was reported by
Paulick et al. [54] and Leuschner et al. [95] within the same study area. Besides this, mean H (14.66 m)
was equal to the values presented by of Homeier et al. [96], who installed field plots at lower elevation,
which confirms the accuracy of the applied method.

By means of the individual H and the specific equation proposed by González-Jaramillo et al. [8]
for the San Francisco catchment, DBH was calculated at tree level. Due to similar H values (Figure 10a),
a good correlation for DBH between RGB and LiDAR data could be recorded (R2: 0.83, p-value < 0.001,
Figure 10b). Mean DBH was only slightly higher (28.08 cm) than the validated values from the LiDAR
data (27.57 cm, Table 1). However, other studies presented notably lower mean DBH for this TMF
(Mean DBH: 9.8 cm) [97], but these investigations included mid- and understory trees as well as trees
at higher elevations, where harsher climate conditions and the more exposed position reduce H and
DBH of the trees [55,56].

The individual tree classification applied here only detects dominant trees because smaller
mid- and understory trees are often not visible due to the upper canopy layer [78]. Therefore, RGB
information, but also LiDAR approaches, slightly overestimate the real mean DBH in dense natural
tropical forests [8]. Nonetheless, dominant trees are most important for AGB estimation because
they represent 70% to 90% of the total AGB of a forest stand [18,19]. To calculate the AGB (Mg ha−1)
by means of the individual tree classification, the specific allometric equation for wet forests from
Chave et al. [49] was applied. The results clearly reflected the forest structure of this TMF because
highest AGB was estimated inside the side valleys (ravine forest, up to 317.77 Mg ha−1), whereas
lowest AGB was near the ridges (ridge forest, 18.77 Mg ha−1, Figure 6). Mean AGB for the core area
(148.66 Mg ha−1, Table 1) was in the same range as the LiDAR approach [8], but also similar to other
AGB estimations published in previous studies (150.0 Mg ha−1) based on field plot measurements at
lower elevation [22,54,95,98]. The small AGB differences between RGB-AGB and LiDAR-AGB were
due to the RMSE of the RGB-CHM* and the number of trees detected, considering also the time span
between RGB and LiDAR survey (see Section 4.3). Also of note, the TMF in the study area is protected
and consists of mature forest (60 to 80 years old trees), where trees generally grow slowly, especially
the older individuals [88]. Therefore, bigger AGB increments over time could not be expected, but
other land cover changes, like landslides, which occur naturally, provoke a reduction in AGB for the
affected areas until natural regeneration reestablishes the vegetation cover.

The multispectral image approach to calculate AGB by means of the deviated NDVI and applying
the equation from Das and Singh [50] resulted in marked overestimations, especially for less vegetated
sites (Table 3). This was principally due to the tendency towards saturation of the spectral bands
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over dense forest covers [82], resulting in similar and high AGB values for all hectares, which is why
forest structure could not be depicted. This type of sensor saturation was also reported by Gu et
al. [99], who obtained very high NDVI values in areas with dense canopies in the USA. Therefore, the
NDVI can hardly be used in natural TMF for AGB estimation because differences in the fast-changing
topography and vegetation cover cannot be detected. The applied equation from Das and Singh [50],
who established their NDVI–AGB relationship in an evergreen forest in the Western Ghat region of
India, also might not be suitable for AGB estimation in this TMF in Southern Ecuador. Therefore,
the equation should be adjusted to provide explicit and more accurate NDVI–AGB relationships
for individual ecosystems, but the matter with spectral band saturation for dense forest stand will
persist. Nonetheless, the multispectral approach might be useful for crops in combination with crop
height information to calculate the AGB [46,100] due to the generally more uniform ground cover
and topography.

In summary, the more effective and accurate approach to estimate AGB by means of UAVs in
natural TMF is the RGB alternative, applying an analysis at tree level. During the process, forest
structure as well as individual H and DBH of each tree detected can be determined [101]. These
parameters, in combination with mean WD of the specific forest type, allowed a realistic AGB calculation.
The RGB data permit the precise detection of the surface (DSM), but ancillary terrain data in high
resolution (DTM) from other sources is necessary in natural tropical forest because the dense canopies
impede ground detection (canopy closure often 100%) [39,58]. However, in natural mid and high
latitude forests [102] as well as in managed forests [93], the RGB approach might be a cost-effective
alternative to expensive LiDAR surveys [103] due to the different forest stand characteristics with open
canopies or regular distance between individual trees, which allows for accurate ground detection [77].

6. Conclusions

UAVs have the potential to generate terrain and surface information in high temporal and spatial
resolution, due to their portability and flexibility. Furthermore, UAVs can be equipped with different
sensors, which allow a wide range of applications and contribute to the advances in the remote sensing
field. In contrast to classical remote sensing data (satellite images), UAVs also avoid the problems
of cloudiness, which is particularly advantageous in tropical high mountains. Nonetheless, their
range is limited due to the battery capacity and the additional payload, which reduce their flight
time. Therefore, UAVs can adequately monitor smaller areas, besides the ability to fill gaps in existing
imagery (e.g., LiDAR data).

As the study showed, for a reliable AGB estimation (Mg ha−1) in natural TMF, a tree level
classification is necessary. This can be reached by RGB images with high side and forward overlap
(80% or higher), to obtain multiple viewing angles of the objects to generate 3D point clouds. However,
in natural tropical forests, terrain information is difficult to capture with this passive sensor due to the
dense canopy layer, which impedes ground detection. Therefore, auxiliary DTMs in high resolution
must be considered to generate reliable CHMs for the subsequent classification at tree level and
AGB calculation.

In contrast, multispectral images suffer saturation of the spectral bands over dense natural forest
stands, which results in generally high NDVI values with small differences between the land cover
units. Therefore, AGB estimation, based on NDVI values, overestimates the real amounts in natural
TMF, especially at less vegetated sites.
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