O-Shape Fractal Antenna Optimized Design with Broad Bandwidth and High Gain for 6G Mobile Communication Devices
Abstract
:1. Introduction
- Optimization to O-shape fractal design: The research presents a novel approach by optimizing an antenna design to an O-shape fractal design from a square patch design. This change in design is a unique feature.
- Operation in the THz band: The antenna is designed to operate in the THz (Terahertz) band, which is a relatively unexplored and cutting-edge frequency range. This is a novel application for antennas.
- Metamaterial properties: The THz patch antenna is investigated for its metamaterial properties, indicating a focus on advanced materials, which is a novelty.
- High bandwidth and gain: The optimized design achieves a very high bandwidth of 31.4 THz (138%) and the highest gain of 11.1 dBi. These performance metrics are noteworthy and represent a novel achievement.
- Two-element MIMO antenna design: The research explores a two-element MIMO antenna design using the O-shape patch, which provides a dual-band operation with unique bandwidths and gain values, showcasing a novel multi-element configuration.
- Comparison with other designs: The comparison between the O-shape single-element fractal design, two-element fractal MIMO design, and other published designs helps highlight the uniqueness and novelty of the presented antenna design.
- Application to 6G high-speed mobile communication devices: The manuscript suggests that the compact, broadband, and high-gain antenna design can be used for 6G high-speed mobile communication devices, implying a novel potential application.
2. Single Element Design and Its Results
3. Parametric Variation for Optimization
4. Two-Port MIMO Antenna Design and Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elbir, A.M.; Mishra, K.V.; Chatzinotas, S. Terahertz-Band Joint Ultra-Massive MIMO Radar-Communications: Model-Based and Model-Free Hybrid Beamforming. IEEE J. Sel. Top. Signal Process. 2021, 15, 1468–1483. [Google Scholar] [CrossRef]
- Sharma, M.K.; Sharma, A. Compact size easily extendable self isolated multi-port multi-band antenna for future 5G high band and sub-THz band applications. Opt. Quantum Electron. 2023, 55, 146. [Google Scholar] [CrossRef]
- Kim, Y.; Pham, D.A.; Phon, R.; Lim, S. Lightweight 3D-Printed Fractal Gradient-Index Lens Antenna with Stable Gain Performance. Fractal Fract. 2022, 6, 551. [Google Scholar] [CrossRef]
- Gupta, A.K.; Mohanta, H.C.; Chowdary, P.S.R.; Krishna, M.V.; Mohamed, H.G. Design and Analysis of Fractal-Shaped High-Impedance Surface Unit Cell Characteristics. Fractal Fract. 2023, 7, 472. [Google Scholar] [CrossRef]
- Xu, H.X.; Wang, G.M.; Zhang, C.X. Fractal-shaped metamaterials and applications to enhanced-performance devices exhibiting high selectivity. Int. J. Antennas Propag. 2012, 2012, 515167. [Google Scholar] [CrossRef]
- Bowen, P.T.; Baron, A.; Smith, D.R. Theory of patch-antenna metamaterial perfect absorbers. Phys. Rev. A 2016, 93, 063849. [Google Scholar] [CrossRef]
- Slimi, M.; Jmai, B.; Dinis, H.; Gharsallah, A.; Mendes, P.M. Metamaterial Vivaldi Antenna Array for Breast Cancer Detection. Sensors 2022, 22, 3945. [Google Scholar] [CrossRef]
- Portosi, V.; Loconsole, A.M.; Prudenzano, F. A split ring resonator-based metamaterial for microwave impedance matching with biological tissue. Appl. Sci. 2020, 10, 6740. [Google Scholar] [CrossRef]
- Loukil, M.H.; Sarieddeen, H.; Alouini, M.S.; Al-Naffouri, T.Y. Terahertz-Band MIMO Systems: Adaptive Transmission and Blind Parameter Estimation. IEEE Commun. Lett. 2021, 25, 641–645. [Google Scholar] [CrossRef]
- Gupta, A.; Chaudhary, R.K. A Compact Pentagonal Ring CPW-Fed Zeroth Order Resonating Antenna with Gain Enhancement. Frequenz 2017, 71, 261–266. [Google Scholar] [CrossRef]
- Khan, M.A.K.; Ullah, M.I.; Kabir, R.; Alim, M.A. High-Performance Graphene Patch Antenna with Superstrate Cover for Terahertz Band Application. Plasmonics 2020, 15, 1719–1727. [Google Scholar] [CrossRef]
- Benkhallouk, K.; Bendaoudi, A.; Berka, M.; Mahdjoub, Z. Enhanced radiation characteristics of regular dodecagon split ring resonator (D-SRR)-based microstrip patch antenna employing dielectric superstrate for THz applications. J. Eng. Appl. Sci. 2022, 69, 1–16. [Google Scholar] [CrossRef]
- Keshwala, U. Microstrip line fed sinusoidal tapered square shaped MIMO antenna for THz applications. Optik 2021, 247, 167905. [Google Scholar] [CrossRef]
- Krishna, C.M.; Das, S.; Nella, A.; Lakrit, S.; Madhav, B.T.P. A Micro-Sized Rhombus-Shaped THz Antenna for High-Speed Short-Range Wireless Communication Applications. Plasmonics 2021, 16, 2167–2177. [Google Scholar] [CrossRef]
- Das, S.; Lakrit, S.; Krishna, C.M.; Varakumari, S.; Mohammed, B.; Ahmed, F. A novel flower petal-shaped super wideband (439.36–557.59 THz) optical nano-antenna for terahertz (THz) wireless communication applications. Opt. Quantum Electron. 2023, 55, 516. [Google Scholar] [CrossRef]
- Shihzad, W.; Ullah, S.; Ahmad, A.; Abbasi, N.A.; Choi, D.Y. Design and Analysis of Dual-Band High-Gain THz Antenna Array for THz Space Applications. Appl. Sci. 2022, 12, 9231. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, P.; Guo, X. MIMO system capacity based on different numbers of antennas. Results Eng. 2022, 15, 100577. [Google Scholar] [CrossRef]
- Abdelrahman, A.; Erchiqui, F.; Nedil, M. Studying and evaluation physical characteristic of composite substrate chip and, its application. Results Eng. 2022, 15, 100533. [Google Scholar] [CrossRef]
- Sumathi, K.; Lavadiya, S.; Yin, P.Z.; Parmar, J.; Patel, S.K. High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku-band wireless network applications. Wirel. Netw. 2021, 27, 2131–2146. [Google Scholar] [CrossRef]
- Keerthi, R.S.; Dhabliya, D.; Elangovan, P.; Borodin, K.; Parmar, J.; Patel, S.K. Tunable high-gain and multiband microstrip antenna based on liquid/copper split-ring resonator superstrates for C/X band communication. Phys. B Condens. Matter 2021, 618, 413203. [Google Scholar] [CrossRef]
- Raj, U.; Sharma, M.K.; Singh, V.; Javed, S.; Sharma, A. Easily extendable four port MIMO antenna with improved isolation and wide bandwidth for THz applications. Optik 2021, 247, 167910. [Google Scholar] [CrossRef]
- Pant, R.; Malviya, L. THz antennas design, developments, challenges, and applications: A review. Int. J. Commun. Syst. 2023, 36, e5474. [Google Scholar] [CrossRef]
- Hajiyat, Z.R.M.; Ismail, A.; Sali, A.; Hamidon, M.N. Antenna in 6G wireless communication system: Specifications, challenges, and research directions. Optik 2021, 231, 166415. [Google Scholar] [CrossRef]
- Duan, B.Y. Evolution and innovation of antenna systems for beyond 5G and 6G. Front. Inf. Technol. Electron. Eng. 2020, 21, 1–3. [Google Scholar] [CrossRef]
- Khaleel, S.A.; Hamad, E.K.I.; Parchin, N.O.; Saleh, M.B. MTM-Inspired Graphene-Based THz MIMO Antenna Configurations Using Characteristic Mode Analysis for 6G/IoT Applications. Electronics 2022, 11, 2152. [Google Scholar] [CrossRef]
- Saxena, G.; Chintakindi, S.; Kasim, M.A.; Maduri, P.K.; Awasthi, Y.K.; Kumar, S.; Kansal, S.; Jain, R.; Sharma, M.K. Metasurface inspired wideband high isolation THz MIMO antenna for nano communication including 6G applications and liquid sensors. Nano Commun. Netw. 2022, 34, 100421. [Google Scholar] [CrossRef]
- Saxena, G.; Awasthi, Y.K.; Jain, P. High Isolation and High Gain Super-Wideband (0.33-10 THz) MIMO Antenna for THz Applications. Optik 2020, 223, 165335. [Google Scholar] [CrossRef]
- Singhal, S. Tetradecagonal ring shaped terahertz superwideband MIMO antenna. Optik 2020, 208, 164066. [Google Scholar] [CrossRef]
- Rubani, Q.; Gupta, S.H.; Rajawat, A. A compact MIMO antenna for WBAN operating at Terahertz frequency. Optik 2020, 207, 164447. [Google Scholar] [CrossRef]
- Das, S.; Mitra, D.; Chaudhuri, S.R.B. Fractal loaded planar Super Wide Band four element MIMO antenna for THz applications. Nano Commun. Netw. 2021, 30, 100374. [Google Scholar] [CrossRef]
- Babu, K.V.; Das, S.; Varshney, G.; Sree, G.N.J.; Madhav, B.T.P. A micro-scaled graphene-based tree-shaped wideband printed MIMO antenna for terahertz applications. J. Comput. Electron. 2022, 21, 289–303. [Google Scholar] [CrossRef]
- Siddiqui, M.U.A.; Qamar, F.; Kazmi, S.H.A.; Hassan, R.; Arfeen, A.; Nguyen, Q.N. A Study on Multi-Antenna and Pertinent Technologies with AI/ML Approaches for B5G/6G Networks. Electronics 2022, 12, 189. [Google Scholar] [CrossRef]
- Mahmood, M.R.; Matin, M.A.; Sarigiannidis, P.; Goudos, S.K. A Comprehensive Review on Artificial Intelligence/Machine Learning Algorithms for Empowering the Future IoT Toward 6G Era. IEEE Access 2022, 10, 87535–87562. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Poor, H.V. 6G Internet of Things: A Comprehensive Survey. IEEE Internet Things J. 2022, 9, 359–383. [Google Scholar] [CrossRef]
- El-Kenawy, E.S.M.; Abutarboush, H.F.; Mohamed, A.W.; Ibrahim, A. Advance Artificial Intelligence Technique for Designing Double T-Shaped Monopole Antenna. Comput. Mater. Contin. 2021, 69, 2983–2995. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Patel, S.K.; Lavadiya, S.; Parmar, J.; Bui, C.D. Design and fabrication of multiband reconfigurable copper and liquid multiple complementary split-ring resonator based patch antenna. Waves Random Complex Media 2022, 32, 1–24. [Google Scholar] [CrossRef]
- Armghan, A.; Alsharari, M.; Aliqab, K.; Alsalman, O.; Parmar, J.; Patel, S.K. Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties. Mathematics 2023, 11, 1579. [Google Scholar] [CrossRef]
- Alsharari, M.; Armghan, A.; Aliqab, K. Numerical Analysis and Parametric Optimization of T-Shaped Symmetrical Metasurface with Broad Bandwidth for Solar Absorber Application Based on Graphene Material. Mathematics 2023, 11, 971. [Google Scholar] [CrossRef]
- Benlakehal, M.E.; Hocini, A.; Khedrouche, D.; Temmar, M.N.E.; Denidni, T.A. Design and analysis of MIMO system for THz communication using terahertz patch antenna array based on photonic crystals with graphene. Opt. Quantum Electron. 2022, 54, 693. [Google Scholar] [CrossRef]
- Muthukrishnan, K.; Kamruzzaman, M.M.; Lavadiya, S.; Sorathiya, V. Superlative split ring resonator shaped ultrawideband and high gain 1×2 MIMO antenna for Terahertz communication. Nano Commun. Netw. 2023, 36, 100437. [Google Scholar] [CrossRef]
- Singhal, S. Elliptical ring terahertz fractal antenna. Optik 2019, 194, 163129. [Google Scholar] [CrossRef]
- Maurya, N.K.; Kumari, S.; Pareek, P.; Singh, L. Graphene-based frequency agile isolation enhancement mechanism for MIMO antenna in terahertz regime. Nano Commun. Netw. 2023, 35, 100436. [Google Scholar] [CrossRef]
- Zhang, B.; Jornet, J.M.; Akyildiz, I.F.; Wu, Z.P. Mutual coupling reduction for ultra-dense multi-band plasmonic nano-antenna arrays using graphene-based frequency selective surface. IEEE Access 2019, 7, 33214–33225. [Google Scholar] [CrossRef]
- Younssi, M.; Jaoujal, A.; Diallo, Y.; El Moussaoui, A.; Aknin, N. Study of a Microstrip Antenna with and Without Superstrate for Terahertz Frequency. Int. J. Innov. Appl. Stud. 2013, 2, 369–371. [Google Scholar]
- Babu, K.V.; Das, S.; Sree, G.N.J.; Madhav, B.T.P.; Patel, S.K.K.; Parmar, J. Design and optimization of micro-sized wideband fractal MIMO antenna based on characteristic analysis of graphene for terahertz applications. Opt. Quantum Electron. 2022, 54, 281. [Google Scholar] [CrossRef]
- Vettikalladi, H.; Sethi, W.T.; Abas, A.F.B.; Ko, W.; Alkanhal, M.A.; Himdi, M. Sub-THz Antenna for High-Speed Wireless Communication Systems. Int. J. Antennas Propag. 2019, 2019, 9573647. [Google Scholar] [CrossRef]
- Kushwaha, R.K.; Karuppanan, P.; Malviya, L.D. Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Phys. B Condens. Matter 2018, 545, 107–112. [Google Scholar] [CrossRef]
Ref. | Band | Structure Type | Application |
---|---|---|---|
[25] | 1 THz to 10 THz | MTM-inspired, graphene-based THz MIMO antenna. | 6G/IoT |
[26] | 0.1 THz to 2 THz | Metasurface-inspired | Nanocommunication |
[27] | 0.1 THz to 10 THz | Elliptical-shaped microstrip feed | Health care and astronomical radiometric |
[28] | 0.25 THz to 15.4 THz | Tetradecagonal ring-shaped | Explosive detection, weapon detection |
[29] | 8.5 THz to 9 THz | Rectangular-shaped four Array | WBAN |
[21] | 2 THz to 10 THz | Circular monopole antenna | HMX, detection of biotin and WBAN |
[30] | 0.1 THz to 10 THz | Fractal-loaded planar | B5G technology |
[31] | 0.1 THz to 1 THz | Tree-shaped micro-scaled graphene antenna | Sensing and security scanning, biomedical imaging |
Design | Size of Antenna (µm2) | Bandwidth (THz) | Gain (dB) |
---|---|---|---|
[39] | 360 × 220 | 0.6 | 11.8 |
[40] | 60 × 40 | 6.99 | 4.635 |
[41] | 800 × 600 | 9 | 9.5 |
[27] | 1000 × 1400 | 9.6 | 19 |
[25] | 130 × 85 | 0.6 | 7.23 |
[27] | 1000 × 1400 | 9.67 | 19 |
[42] | 300 × 210 | 0.83 | 3.99 |
[43] | 13 × 26 | 18.18 | 1.5 |
[30] | 125 × 125 | 9.3 | - |
[44] | 2000 × 1000 | 76 | 10.43 |
[28] | 800 × 1170 | 14.8 | - |
[45] | 600 × 300 | 72.72 | 5.49 |
[46] | 822 × 280 | 0.116 | 13.6 |
[47] | 800 × 600 | 5.71 | 7.934 |
O-shape patch antenna single element design | 65 × 65 | 31.4 | 11.1 |
O-shape two port MIMO antenna design | 130 × 65 | 18.21 | 5.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, S.K.; Baz, A. O-Shape Fractal Antenna Optimized Design with Broad Bandwidth and High Gain for 6G Mobile Communication Devices. Fractal Fract. 2024, 8, 17. https://doi.org/10.3390/fractalfract8010017
Patel SK, Baz A. O-Shape Fractal Antenna Optimized Design with Broad Bandwidth and High Gain for 6G Mobile Communication Devices. Fractal and Fractional. 2024; 8(1):17. https://doi.org/10.3390/fractalfract8010017
Chicago/Turabian StylePatel, Shobhit K., and Abdullah Baz. 2024. "O-Shape Fractal Antenna Optimized Design with Broad Bandwidth and High Gain for 6G Mobile Communication Devices" Fractal and Fractional 8, no. 1: 17. https://doi.org/10.3390/fractalfract8010017
APA StylePatel, S. K., & Baz, A. (2024). O-Shape Fractal Antenna Optimized Design with Broad Bandwidth and High Gain for 6G Mobile Communication Devices. Fractal and Fractional, 8(1), 17. https://doi.org/10.3390/fractalfract8010017