Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions
Abstract
:1. Introduction
2. Preliminaries
3. Interval Hermite–Hadamard Inequalities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.R.; Sadat, R. Lie symmetry analysis, new group invariant for the (3+1)-di- mensional and variable coefficients for liquids with gas bubbles models. Chin. J. Phys. 2021, 71, 539–547. [Google Scholar] [CrossRef]
- Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
- Zhao, T.H.; He, Z.Y.; Chu, Y.M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
- Sabir, Z.; Ali, M.R.; Raja, M.A.Z.; Shoaib, M.; Núñez, R.A.S.; Sadat, R. Computational intellgence approach using Levenberg–Marquardt back propagation neural networks to solve the fourth-order nonlinear system of Emden–Fowler model. Eng. Comput. 2021, 2021, 1–17. [Google Scholar]
- Sadat, R.; Agarwal, P.; Saleh, R.; Ali, M.R. Lie symmetry analysis and invariant solutions of 3d euler equations for axisymmetric, incompressible, and inviscid flow in the cylindrical coordinates. Adv. Differ. Equ. 2021, 2021, 486. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
- Zhao, T.H.; Shi, L.; Chu, Y.M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A. Mat. RACSAM 2020, 114, 96. [Google Scholar] [CrossRef]
- Zhao, T.H.; Zhou, B.C.; Wang, M.K.; Chu, Y.M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Zhang, W.; Chu, Y.M. Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef] [Green Version]
- Kórus, P. An extension of the Hermite–Hadamard inequality for convex and s-convex functions. Aequ. Math. 2019, 93, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Delavar, M.R.; De La Sen, M. A mapping associated to h-convex version of the Hermite–Hadamard inequality with applications. J. Math. Inequal. 2020, 14, 329–335. [Google Scholar] [CrossRef]
- Abramovich, S.; Persson, L.E. Fejér and Hermite–Hadamard type inequalities for n-quasiconvex functions. Math. Notes 2017, 102, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zhao, T.H.; Chu, Y.M.; Liu, B.Y. A note on the Neuman-Sándor mean. J. Math. Inequal. 2014, 8, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.M.; Zhao, T.H.; Liu, B.Y. Optimal bounds for Neuman-Sándor mean in terms of the convex combination of logarithmic and quadratic or contra-harmonic means. J. Math. Inequal. 2014, 8, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.M.; Zhao, T.H.; Song, Y.Q. Sharp bounds for Neuman-Sándor mean in terms of the convex combination of quadratic and first Seiffert means. Acta Math. Sci. 2014, 34, 797–806. [Google Scholar] [CrossRef]
- Song, Y.Q.; Zhao, T.H.; Chu, Y.M.; Zhang, X.H. Optimal evaluation of a Toader-type mean by power mean. J. Inequal. Appl. 2015, 2015, 408. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Set, E.; Akdemir, A.O.; Özdemir, M.E. Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
- Du, T.S.; Awan, M.U.; Kashuri, A.; Zhao, S.S. Some k-fractional extensions of the trapezium inequalities through generalized relative semi- (m, h) -preinvexity. Appl. Anal. 2021, 100, 642–662. [Google Scholar] [CrossRef]
- Wang, J.R.; Deng, J.H.; Feckan, M. Exploring se-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals. Math. Slovaca 2014, 64, 1381–1396. [Google Scholar] [CrossRef]
- Zhao, T.H.; Chu, Y.M.; Jiang, Y.L.; Li, Y.M. Best possible bounds for Neuman-Sándor mean by the identric, quadratic and contraharmonic means. Abstr. Appl. Anal. 2013, 2013, 348326. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.H.; Chu, Y.M.; Liu, B.Y. Optimal bounds for Neuman-Sándor mean in terms of the convex combinations of harmonic, geometric, quadratic, and contraharmonic means. Abstr. Appl. Anal. 2012, 2012, 9. [Google Scholar] [CrossRef]
- Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Xu, H.Z.; Qian, W.M.; Chu, Y.M. Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A. Mat. RACSAM 2022, 116, 21. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Karthikeyan, P.; Baskonus, H.M.; Venkatachalam, K.; Chu, Y.M. Almost sectorial operators on Ψ-Hilfer derivative fractional impulsive integro-differential equations. Math. Methods Appl. Sci. 2021, 2021, 7954. [Google Scholar] [CrossRef]
- Chu, Y.M.; Zhao, T.H. Convexity and concavity of the complete elliptic integrals with respect to Lehmer mean. J. Inequal. Appl. 2015, 2015, 396. [Google Scholar] [CrossRef] [Green Version]
- Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Ed. 2012, 55, 9–15. [Google Scholar] [CrossRef]
- Snyder, J.M. Interval analysis for computer graphics. ACM SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
- Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, D.; Debnath, A.K.; Pedrycz, W. A variable and a fixed ordering of intervals and their application in optimization with interval-valued functions. Internat. J. Approx. Reason. 2020, 121, 187–205. [Google Scholar] [CrossRef]
- Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2009. [Google Scholar]
- Singh, D.; Dar, B.A.; Kim, D.S. KKT optimality conditions in interval valued mul- tiobjective programming with generalized differentiable functions. Eur. J. Oper. Res. 2016, 254, 29–39. [Google Scholar] [CrossRef]
- Younus, A.; Nisar, O. Convex optimization of interval valued functions on mixed domains. Filomat 2019, 33, 1715–1725. [Google Scholar] [CrossRef] [Green Version]
- Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comp. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
- Sha, Z.H.; Ye, G.J.; Zhao, D.F.; Liu, W. On interval-valued k-Riemann integral and Hermite–Hadamard type inequalities. AIMS Math. 2020, 6, 1276–1295. [Google Scholar] [CrossRef]
- Breckner, W.W. Continuity of generalized convex and generalized concave set–valued functions. Rev. Anal. Numér Théor. Approx. 1993, 22, 39–51. [Google Scholar]
- Sadowska, E. Hadamard inequality and a refinement of Jensen inequality for set-valued functions. Result Math. 1997, 32, 332–337. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite–Hadamard Inequalities in Fuzzy-Interval Fractional Calculus and Related Inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Zhao, T.H.; Yang, Z.H.; Chu, Y.M. Monotonicity properties of a function involving the psi function with applications. J. Inequal. Appl. 2015, 2015, 193. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.M.; Wang, H.; Zhao, T.H. Sharp bounds for the Neuman mean in terms of the quadratic and second Seiffert means. J. Inequal. Appl. 2014, 2014, 299. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Akkurt, A.; Sarikaya, M.Z.; Budak, H.; Yildirim, H. On the Hadamard’s type inequali- ties for co-ordinated convex functions via fractional integrals. J. King. Saud. Univ. Sci. 2017, 29, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequal. Appl. 2018, 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Budak, H.; Tunç, T. Generalized Hermite–Hadamard type inequalities for products of co-ordinated convex functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 863–879. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite–Hadamard–like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Budak, H.; Kara, H.; Ali, M.A.; Khan, S.; Chu, Y.M. Fractional Hermite–Hadamard–type inequalities for interval-valued co-ordinated convex functions. Open Math. 2021, 19, 1081–1097. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
- Kulish, U.; Miranker, W. Computer Arithmetic in Theory and Practice; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Bede, B. Volume 295 of studies in fuzziness and soft computing. In Mathematics of Fuzzy Sets and Fuzzy Logic; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Aubin, J.P.; Cellina, A. Differential inclusions: Set-valued maps and viability theory. In Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990. [Google Scholar]
- Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite–Hadamard–type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inform. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
- Dragomir, S. On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 2020, 396, 82–101. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Nonlaopon, K.; Hamed, Y.S. Some New Estimates on Coordinates of Left and Right Convex Interval-Valued Functions Based on Pseudo Order Relation. Symmetry 2022, 14, 473. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings. Mathematics 2022, 10, 611. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. https://doi.org/10.3390/fractalfract6080415
Khan MB, Cătaş A, Alsalami OM. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal and Fractional. 2022; 6(8):415. https://doi.org/10.3390/fractalfract6080415
Chicago/Turabian StyleKhan, Muhammad Bilal, Adriana Cătaş, and Omar Mutab Alsalami. 2022. "Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions" Fractal and Fractional 6, no. 8: 415. https://doi.org/10.3390/fractalfract6080415
APA StyleKhan, M. B., Cătaş, A., & Alsalami, O. M. (2022). Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal and Fractional, 6(8), 415. https://doi.org/10.3390/fractalfract6080415