Convergence Rate of the High-Order Finite Difference Method for Option Pricing in a Markov Regime-Switching Jump-Diffusion Model
Abstract
:1. Introduction
1.1. Background
1.2. The PIDEs in a Markov Regime-Switching Jump-Diffusion Model
1.3. High-Order Finite Difference Method
1.4. Outline of This Paper
2. Main Results
2.1. The Two Lemmas
2.2. The Main Theorem
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bastani. A.F.; Ahmadi, Z.; Damircheli, D. A radial basis collocation method for pricing American options under regime-switching jump-diffusion models. Appl. Numer. Math. 2013, 65, 79–90. [Google Scholar] [CrossRef]
- Costabile, M.; Leccadito, A.; Massabó, I.; Russo, E. Option pricing under regime-switching jump-diffusion models. J. Comput. Appl. Math. 2014, 256, 152–167. [Google Scholar] [CrossRef]
- Florescu, I.; Liu, R.; Mariani, M.C. Numerical schemes for option pricing in regime-switching jump diffusions models. Int. J. Theor. Appl. Financ. 2014, 16, 1350046. [Google Scholar] [CrossRef]
- Rambeerich, N.; Pantelous, A. A high order finite element scheme for pricing options under regime switching jump diffusion processes. J. Comput. Appl. Math. 2016, 300, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Dang, D.; Nguyen, D.; Sewell, G. Numerical schemes for pricing Asian options under state- dependent regime-switching jump-diffusion models. Comput. Math. Appl. 2016, 71, 443–458. [Google Scholar] [CrossRef]
- Patel, K.S.; Mehra, M. Fourth-order compact finite difference scheme for American option pricing under regime-switching jump-diffusion models. Int. J. Appl. Comput. Math. 2017, 3, 547–567. [Google Scholar] [CrossRef]
- Tour, G.; Thakoor, N.; Tangman, D.Y.; Bhuruth, M. A high-order RBF-FD method for option pricing under regime-switching stochastic volatility models with jumps. J. Comput. Sci. 2019, 35, 25–43. [Google Scholar] [CrossRef]
- Liang, X.; Wang, G.; Dong, Y. A Markov regime switching jump-diffusion model for the pricing of portfolio credit derivatives. Stat. Probabil. Lett. 2013, 83, 373–381. [Google Scholar] [CrossRef]
- Jin, Z.; Yin, G.; Wu, F. Optimal reinsurance strategies in regime-switching jump diffusion models: Stochastic differential game formulation and numerical methods. Insur. Math. Econ. 2013, 53, 733–746. [Google Scholar] [CrossRef]
- Siu, T.K. Bond pricing under a Markovian regime-switching jump-augmented Vasicek model via stochastic flows. Appl. Math. Comput. 2010, 216, 3184–3190. [Google Scholar]
- Jin, Z.; Yang, H.; Yin, G.G. Numerical methods for optimal dividend payment and investment strategies of regime-switching jump diffusion models with capital Injections. Automatica 2013, 49, 2317–2329. [Google Scholar] [CrossRef] [Green Version]
- Weron, R.; Bierbrauer, M.; Trück, S. Modeling electricity prices: Jump diffusion and regime switching. Phys. A Stat. Mech. Its Appl. 2004, 336, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Elliott, R.J.; Siu, T.K. A stochastic maximum principle for a Markov regime-switching jump-diffusion model and its application to finance. SIAM J. Control Optim. 2012, 50, 964–990. [Google Scholar] [CrossRef]
- Savku, E.; Weber, G.W. A stochastic maximum principle for a Markov regime-switching jump-diffusion model with delay and an application to finance. J. Optim. Theory Appl. 2017, 179, 696–721. [Google Scholar] [CrossRef]
- During, B.; Fournie, M. High-order compact finite difference scheme for option pricing in stochastic volatility models. J. Comput. Appl. Math. 2012, 236, 4462–4473. [Google Scholar] [CrossRef]
- During, B.; Fournie, M.; Heuer, C. High-order compact finite difference scheme for option pricing in stochastic volatility models on non-uniform grids. J. Comput. Appl. Math. 2014, 271, 247–266. [Google Scholar] [CrossRef] [Green Version]
- During, B.; Heuer, C. High-order compact schemes for parabolic problems with mixed derivatives in multiple space dimensions. SIAM J. Numer. Anal 2015, 53, 2113–2134. [Google Scholar] [CrossRef] [Green Version]
- During, B.; Pitkin, A. High-order compact finite difference scheme for option pricing in stochastic volatility jump models. J. Comput. Appl. Math. 2019, 355, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Vong, S.; Wang. Z. A high order compact finite difference scheme for time fractional Fokker-Planck equations. Appl. Math. Lett. 2015, 43, 38–43. [Google Scholar] [CrossRef]
- Thakoor, N.; Behera, D.K.; Tangman, D.Y.; Bhuruth, M. Howard’s algorithm for high-order approximations of American options under jump-diffusion models. Int. J. Data Sci. Anal. 2020, 10, 193–203. [Google Scholar] [CrossRef]
- Hendricks, C.; Heuer, C.; Ehrhardt, M.; Günther, M. High-order ADI finite difference schemes for parabolic equations in the combination technique with application in finance. J. Comput. Appl. Math. 2017, 316, 175–194. [Google Scholar] [CrossRef]
- Patel, K.S.; Mehra, M. High-order compact finite difference scheme for pricing Asian option with moving boundary condition. Differ. Equ. Dyn. Syst. 2017, 27, 39–56. [Google Scholar] [CrossRef]
- Düring, B.; Pitkin, A. High-order compact finite difference scheme for option pricing in stochastic volatility with contemporaneous jump models. SSRN Electron. J. 2019, 30, 365–371. [Google Scholar]
- Yousuf, M. High-order time stepping scheme for pricing American option under Bates model. Int. J. Comput. Math. 2018, 96, 18–32. [Google Scholar] [CrossRef]
- During, B.; Heuer, C. Time-Adaptive High-Order Compact Finite Difference Schemes for Option Pricing in a Family of Stochastic Volatility Models. Available online: https://ssrn.com/abstract=3890159 (accessed on 20 July 2021).
- Ma, J.; Tang, H.; Zhu, S.P. Connection between trinomial trees and finite difference methods for option pricing with state-dependent switching rates. Int. J. Comput. Math. 2018, 95, 341–360. [Google Scholar] [CrossRef] [Green Version]
- Alfonsi, A. High order discretization schemes for the CIR process: Application to affine term structure and Heston models. Math. Comp. 2010, 79, 209–237. [Google Scholar] [CrossRef]
- Altmayer, M.; Neuenkirch, A. Discretising the Heston model: An analysis of the weak convergence rate. IMA J. Numer. Anal. 2017, 37, 1930–1960. [Google Scholar] [CrossRef]
- Bossy, M.; Olivero, H. Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs. Bernoulli 2018, 24, 1995–2042. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C. Weak convergence rate of a time-discrete scheme for the Heston stochastic volatility model. SIAM J. Numer. Anal. 2017, 55, 1243–1263. [Google Scholar] [CrossRef]
- Briani, M.; Caramellino, L.; Terenzi, G. Convergence rate of Markov chains and hybrid numerical schemes to jump-diffusions with application to the Bates model. SIAM J. Numer. Anal 2021, 59, 477–502. [Google Scholar] [CrossRef]
- Briani, M.; Caramellino, L.; Terenzi, G.; Zanette, A. Numerical stability of a hybrid method for pricing options. Int. J. Theor. Appl. Financ. 2019, 22, 1950036. [Google Scholar] [CrossRef]
- Lesmana, D.C.; Wang, S. A numerical scheme for pricing American options with transaction costs under a jump diffusion process. J. Ind. Manag. Optim. 2017, 13, 1793–1813. [Google Scholar] [CrossRef] [Green Version]
- Merton, R.C. Theory of rational option pricing. Bell J. Econ. Manag. Sci 1973, 4, 141–183. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Yan, J. Convergence Rate of the High-Order Finite Difference Method for Option Pricing in a Markov Regime-Switching Jump-Diffusion Model. Fractal Fract. 2022, 6, 409. https://doi.org/10.3390/fractalfract6080409
Liu J, Yan J. Convergence Rate of the High-Order Finite Difference Method for Option Pricing in a Markov Regime-Switching Jump-Diffusion Model. Fractal and Fractional. 2022; 6(8):409. https://doi.org/10.3390/fractalfract6080409
Chicago/Turabian StyleLiu, Jun, and Jingzhou Yan. 2022. "Convergence Rate of the High-Order Finite Difference Method for Option Pricing in a Markov Regime-Switching Jump-Diffusion Model" Fractal and Fractional 6, no. 8: 409. https://doi.org/10.3390/fractalfract6080409
APA StyleLiu, J., & Yan, J. (2022). Convergence Rate of the High-Order Finite Difference Method for Option Pricing in a Markov Regime-Switching Jump-Diffusion Model. Fractal and Fractional, 6(8), 409. https://doi.org/10.3390/fractalfract6080409