Hermite-Hadamard Fractional Inequalities for Differentiable Functions
Abstract
1. Introduction
2. Preliminaries
3. Main Results
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, B.; Pu, X.; Huange, F. Fractional Partial Differential Equations and Thier Numerical Solution; World Scientific: Hong Kong, China, 2015. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Dokuyucua, M.A. Caputo and Atangana-Baleanu-Caputo Fractional Derivative Applied to Garden Equation. Turk. J. Sci. 2020, 5, 1–7. [Google Scholar]
- Samraiz, M.; Perveen, Z.; Abdeljawad, T.; Iqbal, S.; Naheed, S. On certain fractional calculus operators and applications in mathematical physics. Phys. Scr. 2020, 95, 115210. [Google Scholar] [CrossRef]
- Samraiz, M.; Perveen, Z.; Rahman, G.; Nisar, K.S.; Kumar, D. On the (k, s)-Hilfer-Prabhakar Fractional Derivative with Applications to Mathematical Physics. Front. Phys. 2020, 8, 309. [Google Scholar] [CrossRef]
- Korus, P. Some Hermite-Hadamard type inequalities for functions of generalized convex derivative. Acta Math. Hung. 2021, 165, 463–473. [Google Scholar] [CrossRef]
- Farid, G.; Yousaf, M.; Nonlaopon, K. Fejér-Hadamard type inequalities for (a,h-m)-p-convex functions via extended generalized fractional integrals. Fractal Fract. 2021, 5, 253. [Google Scholar] [CrossRef]
- Ekinci, A.; Özdemir, M.E. Some new integral inequalities via Riemann-Liouville integral operators. Appl. Comput. Math. 2019, 18, 288–295. [Google Scholar]
- Butt, S.I.; Nadeem, M.; Farid, G. On Caputo fractional derivatives via exponential s-convex functions. Turk. J. Sci. 2020, 5, 140–146. [Google Scholar]
- Zhou, S.-S.; Rashid, S.; Parveen, S.; Akdemir, A.O.; Hammouch, Z. New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators. AIMS Math. 2021, 6, 507–4525. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S.; Seron, P. Ostrowski’s inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Ionescu, N.M. Some remarks on convex functions. Rev. d’analyse Numer. Theor. Approx. Tome 1992, 21, 31–36. [Google Scholar]
- Dragomir, S.S.; Wang, S. A new inequality of Ostrowski’s type in Lp norm and applications to some special means and to some numerical quadrature rules. Indian J. Math. 2008, 40, 299–304. [Google Scholar]
- McShane, E.J. Jensen’s inequality. Bull. Am. Math. Soc. 1937, 43, 521–527. [Google Scholar] [CrossRef]
- Samraiz, M.; Nawaz, F.; Iqbal, S.; Abdeljawad, T.; Rahman, G.; Nisar, K.S. Certain mean-type fractional integral inequalities via different convexities with applications. J. Inequal. Appl. 2020, 2020, 208. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, B. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comp. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Hadamard, J. Etude sur les proprietes des fonctions entieres et en particulier d’une fonction consideree par Riemann. J. Math. Pures Appl. 1893, 58, 171–216. [Google Scholar]
- Lyu, S.L. On the Hermite-Hadamard inequality for convex functions of two variables. Numer. Algebra Control Optim. 2014, 4, 1–8. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Old and new on the Hermite Hadamard inequality. Real Anal. Exch. 2003, 29, 663–683. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Feckan, M.; Zhou, Y. Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Appl. Anal. 2013, 92, 2241–2253. [Google Scholar] [CrossRef]
- Mihai, M.V.; Awan, M.U.; Noor, M.A.; Kim, J.K. Hermite-Hadamard inequalities and their applications. J. Inequal. Appl. 2018, 2018, 309. [Google Scholar] [CrossRef] [PubMed]
- Okur, N.; Yalcin, F.B.; Karahan, V. Some Hermite-Hadamard Type Integral Inequalities for Multidimentional Preinvex Functions. Turk. J. Ineq. 2019, 3, 54–63. [Google Scholar]
- Anastassiou, G.A. Fractional Differentiation Inequalities; Springer: New York, NY, USA, 2009. [Google Scholar]
- Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for solution of fractional differential equations with generalized Riemann-Liouville fractional derivative. Fract. Calc. Appl. Anal. 2009, 12, 299–318. [Google Scholar]
- Liao, Y.; Deng, J.; Wang, J. Riemann-Liouville fractional Hermite-Hadamard inequalities, part I, for twice differentiable geometric-arithmetically s-convex functions. J. Inequal. Appl. 2013, 2013, 517. [Google Scholar] [CrossRef][Green Version]
- Deng, J.; Wang, J. Fractional Hermite-Hadamard’s inequalities for (α,m)-logrithmically convex functions. J. Inequal. Appl. 2013, 2013, 364. [Google Scholar] [CrossRef]
- Farid, G.; Naqvi, S.; Javed, A. Hadamard and Fejer-Hadamard inequalities and related results via Caputo fractional derivative. Bull. Math. Anal. Appl. 2017, 9, 16–30. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samraiz, M.; Perveen, Z.; Rahman, G.; Adil Khan, M.; Nisar, K.S. Hermite-Hadamard Fractional Inequalities for Differentiable Functions. Fractal Fract. 2022, 6, 60. https://doi.org/10.3390/fractalfract6020060
Samraiz M, Perveen Z, Rahman G, Adil Khan M, Nisar KS. Hermite-Hadamard Fractional Inequalities for Differentiable Functions. Fractal and Fractional. 2022; 6(2):60. https://doi.org/10.3390/fractalfract6020060
Chicago/Turabian StyleSamraiz, Muhammad, Zahida Perveen, Gauhar Rahman, Muhammad Adil Khan, and Kottakkaran Sooppy Nisar. 2022. "Hermite-Hadamard Fractional Inequalities for Differentiable Functions" Fractal and Fractional 6, no. 2: 60. https://doi.org/10.3390/fractalfract6020060
APA StyleSamraiz, M., Perveen, Z., Rahman, G., Adil Khan, M., & Nisar, K. S. (2022). Hermite-Hadamard Fractional Inequalities for Differentiable Functions. Fractal and Fractional, 6(2), 60. https://doi.org/10.3390/fractalfract6020060