Inclusion Relations for Dini Functions Involving Certain Conic Domains
Abstract
:1. Introduction, Definitions and Motivation
2. Preliminaries Results
3. Main Results
4. Concluding Remarks and Observations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Din, M.U.; Raza, M.; Yagmur, N.; Malik, S.N. On partial sums of Wright functions. UPB Sci. Bull. Ser. A 2018, 80, 79–90. [Google Scholar]
- Baricz, Á. Bessel transforms and Hardy space of generalized Bessel functions. Mathematica 2006, 48, 127–136. [Google Scholar]
- Raza, M.; Din, M.U.; Malik, S.N. Certain Geometric Properties of Normalized Wright Functions. J. Funct. Spaces 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Connor, J.J.O. Friedrich Wilhelm Bessel; School of Mathematics and Statistics University of St Andrews: St. Andrews, UK, 1997. [Google Scholar]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformatioons. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Baricz, Á.; Deniz, E.; Yağmur, N. Close-to-convexity of normalized Dini functions. Math. Nachr. 2016, 289, 1721–1726. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.I.S. On the Theory of Univalent Functions. Ann. Math. 1936, 37, 374. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Owa, S. (Eds.) Current Topics in Analytic Function Theory; World Scientific: River Edge, NJ, USA, 1992. [Google Scholar]
- Libera, R.J. Some radius of convexity problems. Duke Math. J. 1964, 31, 143–158. [Google Scholar] [CrossRef]
- Kanas, S. Alternative characterization of the class k-UCV and related classes of univalent functions. Serdica Math. J. 1999, 25, 341–350. [Google Scholar]
- Kanas, S. Techniques of the differential subordination for domains bounded by conic sections. Int. J. Math. Math. Sci. 2003, 2003, 2389–2400. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S. Differential subordination related to conic sections. J. Math. Anal. Appl. 2006, 317, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S. Subordination for domains bounded by conic sections. Bull. Belg. Math. Soc. Simon Stevin 2008, 15, 589–598. [Google Scholar] [CrossRef]
- Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniform convex functions. Integral Transform. Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic regions and k-starlike function. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Arif, M.; Raza, M. Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Math. 2021, 6, 5869–5885. [Google Scholar] [CrossRef]
- Shams, S.; Kulkarni, S.R.; Jahangiri, J.M. Classes of uniformly starlike and convex functions. Int. J. Math. Math. Sci. 2004, 2004, 2959–2961. [Google Scholar] [CrossRef]
- Al-Kharsani, H.A.; Al-Hajiry, S.S. Subordination results for the family of uniformly convex p-valent functions. J. Inequal. Pure Appl. Math. 2006, 7, 1–9. [Google Scholar]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Goodman, W. On uniformly starlike functions. J. Math. Anal. Appl. 1991, 155, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.C.; Minda, D. Uniformly convex functions. Ann. Pol. Math. 1992, 57, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Rønning, F. A survey on uniformly convex and uniformly starlike functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1993, 47, 123–134. [Google Scholar]
- Khan, Q.; Arif, M.; Raza, M.; Srivastava, G.; Tang, H.; Rehman, S.U. Some Applications of a New Integral Operator in q-Analog for Multivalent Functions. Mathematics 2019, 7, 1178. [Google Scholar] [CrossRef] [Green Version]
- Khan, B.; Srivastava, H.M.; Arjika, S.; Khan, S.; Khan, N.; Ahmad, Q.Z. A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions. Adv. Differ. Equ. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.; Khan, N.; Darus, M.; Tahir, M.; Ahmad, Q.Z. Coefficient Estimates for a Subclass of Analytic Functions Associated with a Certain Leaf-Like Domain. Mathematics 2020, 8, 1334. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Srivastava, H.; Khan, N.; Darus, M.; Tahir, M. A Study of Some Families of Multivalent q-Starlike Functions Involving Higher-Order q-Derivatives. Mathematics 2020, 8, 1470. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.; Khan, N.; Darus, M.; Ahmad, Q.Z.; Tahir, M. Applications of Certain Conic Domains to a Subclass of q-Starlike Functions Associated with the Janowski Functions. Symmetry 2021, 13, 574. [Google Scholar] [CrossRef]
- Shi, L.; Khan, Q.; Srivastava, G.; Liu, J.-L.; Arif, M. A Study of Multivalent q-starlike Functions Connected with Circular Domain. Mathematics 2019, 7, 670. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Ahmad, B.; Khan, N.; Khan, M.G.; Araci, S.; Mashwani, W.K.; Khan, B. Coefficient Estimates for a subclass of meromorphic multivalent q-Close-to-convex functions. Symmetry 2021, 13, 1840. [Google Scholar] [CrossRef]
- Shi, L.; Khan, M.G.; Ahmad, B.; Mashwani, W.K.; Agarwal, P.; Momani, S. Certain coefficient estimates problems for three-leaf-type starlike functions. Fractal Fract. 2021, 5, 137. [Google Scholar] [CrossRef]
- Hu, Q.; Srivastava, H.M.; Ahmad, B.; Khan, N.; Khan, M.G.; Mashwani, W.K.; Khan, B. A subclass of multivalent Janowski type q-starlike functions and its consequences. Symmetry 2021, 13, 1275. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Eeinigenburg, P.; Miller, S.S.; Mocanu, P.T.; Reade, M.D. General inequalities. Birkhäuser 1983, 64, 339–348. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and inequalities in the complex plane. J. Differ. Equ. 1987, 67, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Q.Z.; Khan, N.; Raza, M.; Tahir, M.; Khan, B. Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions. Filomat 2019, 33, 3385–3397. [Google Scholar] [CrossRef]
- Malik, S.N.; Mahmood, S.; Raza, M.; Farman, S.; Zainab, S. Coefficient Inequalities of Functions Associated with Petal Type Domains. Mathematics 2018, 6, 298. [Google Scholar] [CrossRef] [Green Version]
- Ul-Haq, M.; Raza, M.; Arif, M.; Khan, Q.; Tang, H.; Ul-Haq, M. q-Analogue of Differential Subordinations. Mathematics 2019, 7, 724. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, B.; Khan, S.; Ro, J.-S.; Araci, S.; Khan, N.; Khan, N. Inclusion Relations for Dini Functions Involving Certain Conic Domains. Fractal Fract. 2022, 6, 118. https://doi.org/10.3390/fractalfract6020118
Khan B, Khan S, Ro J-S, Araci S, Khan N, Khan N. Inclusion Relations for Dini Functions Involving Certain Conic Domains. Fractal and Fractional. 2022; 6(2):118. https://doi.org/10.3390/fractalfract6020118
Chicago/Turabian StyleKhan, Bilal, Shahid Khan, Jong-Suk Ro, Serkan Araci, Nazar Khan, and Nasir Khan. 2022. "Inclusion Relations for Dini Functions Involving Certain Conic Domains" Fractal and Fractional 6, no. 2: 118. https://doi.org/10.3390/fractalfract6020118
APA StyleKhan, B., Khan, S., Ro, J. -S., Araci, S., Khan, N., & Khan, N. (2022). Inclusion Relations for Dini Functions Involving Certain Conic Domains. Fractal and Fractional, 6(2), 118. https://doi.org/10.3390/fractalfract6020118