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Abstract: This paper introduces a new integral operator in q-analog for multivalent functions.
Using as an application of this operator, we study a novel class of multivalent functions and define
them. Furthermore, we present many new properties of these functions. These include distortion
bounds, sufficiency criteria, extreme points, radius of both starlikness and convexity, weighted mean
and partial sum for this newly defined subclass of multivalent functions are discussed. Various
integral operators are obtained by putting particular values to the parameters used in the newly
defined operator.
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1. Introduction

The study of q-extension of calculus or q-analysis motivated the researchers due to its recent use in
different applications. In [1,2], Jackson introduced the theory of q-calculus. We have seen applications
of q-analysis in Geometric Function Theory (GFT). They were introduced and applied systematically to
the generalized q-hypergeometric functions in [3]. Later, Ismail et al. [4] used the q-differential operator
to examine the geometry of starlike function in q-analog. This theory was later extended to the family
of q-starlike function with some order by Agrawal and Sahoo [5]. Due to this development in function
theory, many researchers were motivated, as we have seen by Srivastava in [6]. They added significant
contributions, which has slowly made this research area more attractive to forthcoming researchers.
We direct the attention of our readers to [7–12] for more information. Moreover, Kanas et al. [13] used
Hadamad product to define the q-extension of the Ruscheweyh operator. They also discussed in detail
some intricate applications of this operator.

Mohammad and Darus [14] conducted an elaborate study of this operator. We have also seen
similar work by Mahmood and Sokół [15] and Ahmad et al. [16]. Recently, new thoughts by Maslina
in [17] were used to create a novel differential operator called generalized q-differential operator with
the help of q-hypergeometric functions where the authors conducted an in-depth study of applications
of this operator. For further information on the extensions of different operators in q-analog, we direct
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the readers to [18–22]. The aim of the present article is to introduce a new integral operator in q-analog
for multivalent functions using Hadamard product and then study some of its useful applications.

Let Ap (p ∈ N = {1, 2, . . .}) contain multivalent functions of all forms f that can be defined as
holomorphic and/or analytic in any given subset D = {z : |z| < 1} that is part of a complex plane C
which also has the series form shown as:

f (z) = zp +
∞

∑
n=1

an+pzn+p, (z ∈ D) . (1)

For any two given functions that are analytic in form f and g in D, then we can clearly state that
f is subordinate to g, mostly symbolically if it is presented clearly as f ≺ g or f (z) ≺ g (z) , if and
only if there exists an analytic function w with the given properties as w (0) = 0 and |w (z)| < 1 such
that f (z) = g(w(z)) (z ∈ D) . Moreover, if and only if g can be seen as univalent in D, then we can
clearly have:

f (z) ≺ g(z) (z ∈ D) ⇐⇒ f (0) = g(0) and f (D) ⊂ g(D).

For analytic functions f of the form Equation (1) and g of the form

g(z) = zp +
∞

∑
n=1

bn+pzn+p, (z ∈ D) , (2)

the convolution or Hadamard product is defined by

( f ∗ g)(z) = zp +
∞

∑
n=1

an+pbn+pzn+p, (z ∈ D) .

For given q ∈ (0, 1), the derivative in q-analog of f is given by

Dq f (z) =
f (z)− f (qz)

z (1− q)
, (z 6= 0, q 6= 1) . (3)

Making use of Equations (1) and (3), we can easily obtain for n ∈ N and z ∈ D

Dq

{
∞

∑
n=1

an+pzn+p

}
=

∞

∑
n=1

[n + p]q an+pzn+p−1, (4)

where

[n]q =
1− qn

1− q
= 1 +

n−1

∑
k=1

qk, [0]q = 0. (5)

For n ∈ Z+ := Z\ {−1,−2, . . .} , the q-factorial is given as:

[n]q! =

{
1, n = 0,
[1]q [2]q . . . [n]q , n ∈ N.

In addition, with t > 0, the q-Pochhammer symbol has the form:

[t]q,n =
(
[t]q
)

n =

{
1, n = 0,
[t]q[t + 1]q · · · [t + n− 1]q, n ∈ N,

where [t]q is given by Equation (5).
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For t > 0, the gamma function in q-analog is presented as

Γq (t + 1) = [t]q Γq (t) and Γq (1) = 1.

We now consider a function

F−1
q,λ+p(z) = zp +

∞

∑
n=1

Ψn−pan+pzn+p, (λ > −p, z ∈ D), (6)

with

Ψn−p =
[λ + p]q,n+1−p

[n + 1− p]q!
. (7)

We can see that the series given in Equation (6) is absolutely convergent in D. Now, we introduce
the integral operator J λ+p−1

q : Ap → Ap by

J λ+p−1
q f (z) = (F−1

q,λ+p ∗ f )(z) = zp +
∞

∑
n=1

Ψn−pan+pzn+p (z ∈ D) , (8)

where λ > −p. We note that

lim
q→1−

F−1
q,λ+p (z) =

zp

(1− z)λ+1 and lim
q→1−

J λ+p−1
q f (z) = f (z) ∗ zp

(1− z)λ+1 .

Various integral operators were obtained by putting particular values to the parameters used in
the newly defined operator as given by Equation (7):

(i). Making p = 1 in our newly defined operator J λ+p−1
q f , we obtain the operator J λ

q f which
was introduced by Arif et al. [20] and is given by

J λ
q f (z) = (F−1

q,λ+1 ∗ f )(z) = z +
∞

∑
n=1

Ψn−1an+1zn+1 (z ∈ D) .

(ii). When q→ 1−, the operator defined in Equation (7) leads to the following well-known Noor
integral operator for multivalent functions introduced in [23].

J λ+p−1 f (z) = (F−1
λ+p ∗ f )(z) = zp +

∞

∑
n=1

Ψn−pan+pzn+p, (z ∈ D) .

(iii). If we set p = 1 along with q→ 1− in Equation (7), then the operator J λ+p−1 f reduced to the
following familiar Noor integral operator studied in [24,25].

Iλ f (z) = (F−1
λ+1 ∗ f )(z) = z +

∞

∑
n=1

Ψn−1an+1zn+1, (z ∈ D) .

For more details on the q-analog of differential and integral operators, see [17,26,27].
Motivated from the work in [28–35], we now introduce a subfamilyHλ

p,q (α, µ, β) of Ap by using

J λ+p−1
q as follows:

Definition 1. Let f ∈ Ap. Then, f ∈ Hλ
p,q (α, µ, β) , if it satisfies the relation∣∣∣∣∣∣ z1−pDqJ λ+p−1

q f (z)− [p]q

2β
[
z1−pDqJ λ+p−1

q f (z)− α[p]q
]
−
[
z1−pDqJ λ+p−1

q f (z)− [p]q
]
∣∣∣∣∣∣ < µ, (9)

where 1
2 6 β < 1, 0 6 α < 1

2 , 0 < µ 6 1 and 0 < q < 1.
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By varying the parameters values in the class Hλ
p,q (α, µ, β), we get many new classes; we list

some of them.
(i). For p = 1, we haveHλ

1,q (α, µ, β) ≡ Hλ
q (α, µ, β) .

(ii). Taking the limit q→ 1−, we get the classHλ
p (α, µ, β) .

(iii). Putting β = 1
2 , µ = 1 and α = 0, we obtainHλ

p,q

(
0, 1, 1

2

)
.

(iv). Further, if we put p = 1 and q→ 1− inHλ
p,q

(
0, 1, 1

2

)
, we have the classHλ

1

(
0, 1, 1

2

)
.

Note that we assume throughout our discussion, unless otherwise stated,

1
2
≤ β ≤ 1, 0 ≤ α < 1, 0 < µ ≤ 1, λ > −p, 0 < q < 1

and all coefficients ak are positive.

2. The Main Results and Their Consequences

Theorem 1. If f ∈ Ap has the form of Equation (1) and satisfies the inequality

∞

∑
n=1

Ψn−p [n + p]q (1 + µ (2β− 1)) |an+p| ≤ 2µβ [p]q (1− α) , (10)

then f ∈ Hλ
p,q (α, µ, β) .

Proof. To show that f ∈ Hλ
p,q (α, µ, β) , we just need to prove Equation (9). For this, consider

L =

∣∣∣∣∣∣
1

[p]q
z1−pDqJ λ+p−1

q f (z)− 1

2β
[

1
[p]q

z1−pDqJ λ+p−1
q f (z)− α

]
−
[

1
[p]q

z1−pDqJ λ+p−1
q f (z)− 1

]
∣∣∣∣∣∣

=

∣∣∣∣∣∣ z1−pDqJ λ+p−1
q f (z)− [p]q

2β
[
z1−pDqJ λ+p−1

q f (z)− α[p]q
]
−
[
z1−pDqJ λ+p−1

q f (z)− [p]q
]
∣∣∣∣∣∣ .

Using Equation (8) with the help of Equations (3) and (4), we can easily obtain

L =

∣∣∣∣∣∣∣∣
∞
∑

n=1
Ψn−p [n + p]q an+pzn

2β [p]q (1− α) + 2β
∞
∑

n=1
Ψn−p [n + p]q an+pzn −

∞
∑

n=1
Ψn−p [n + p]q an+pzn

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞
∑

n=1
Ψn−p [n + p]q an+pzn

2β [p]q (1− α) + (2β− 1)
∞
∑

n=1
Ψn−p [n + p]q an+pzn

∣∣∣∣∣∣∣∣
≤

∞
∑

n=1
Ψn−p [n + p]q |an+P|

2β [p]q (1− α)− (2β− 1)
∞
∑

n=1
Ψn−p [n + p]q |an+P|

< µ,

where we have used the inequality in Equation (10) and this completes the proof.

Making β = 1
2 , p = 1 along with q→ 1−, we get the following result.
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Corollary 1. If f ∈ A and satisfies the inequality

∞

∑
n=1

Ψn−1 (n + 1) |an+1| ≤ µ (1− α) ,

then f ∈ Hλ
(

α, µ, 1
2

)
.

Theorem 2. If f ∈ Hλ
p,q (α, µ, β) has the form of Equation (1), then

rp − ξr ≤ | f (z)| ≤ rp + ξr, |z| = r < 1,

where

ξ =
2µβ [p]q (1− α)

(1 + µ (2β− 1))Ψ1−p [1 + p]q
.

Proof. Consider

| f (z)| =

∣∣∣∣∣zp +
∞

∑
n=1

an+pzn+p

∣∣∣∣∣
≤ |z|p +

∞

∑
n=1

∣∣an+p
∣∣ |z|n+p

= rp +
∞

∑
n=1

∣∣an+p
∣∣ rn+p.

Since 0 < r < 1 and rn+p < r,

| f (z)| ≤ rp + r
∞

∑
n=1

∣∣an+p
∣∣ . (11)

Similarly,

| f (z)| ≥ rp − r
∞

∑
n=1

∣∣an+p
∣∣ . (12)

It can easily be seen that

Ψ1−p (1 + µ (2β− 1)) [1 + p]q
∞

∑
n=1

∣∣an+p
∣∣ ≤ ∞

∑
n=1

Ψn−p (1 + µ (2β− 1)) [n + p]q
∣∣an+p

∣∣ .

By using the relation in Equation (10), we obtain

Ψ1−p (1 + µ (2β− 1)) [1 + p]q
∞
∑

n=1

∣∣an+p
∣∣ ≤ 2µβ [p]q (1− α) ,

which gives
∞
∑

n=1

∣∣an+p
∣∣ ≤ 2µβ[p]q(1−α)

Ψ1−p(1+µ(2β−1))[1+p]q
.

Now, by using the above relation in Equations (11) and (12), we obtain the result.

Setting β = 1
2 , p = 1 along with q→ 1− in the last theorem, we have
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Corollary 2. If f ∈ Hλ
(

α, µ, 1
2

)
, then for |z| = r < 1

(
1− µ (1− α)

2 (λ + 1)

)
r ≤ | f (z)| ≤

(
1 +

µ (1− α)

2 (λ + 1)

)
r.

Theorem 3. If f ∈ Hλ
p,q (α, µ, β) has the form of Equation (1), then

[p]q rp−1 − ϑr ≤
∣∣Dq f (z)

∣∣ ≤ [p]q rp−1 + ϑr, |z| = r < 1,

where ϑ =
2µβ[p]q(1−α)

(1+µ(2β−1))Ψ1−p
.

Proof. By using Equations (3) and (4), we can have

Dq f (z) = [p]q zp−1 +
∞

∑
n=1

[n + p]qan+pzn+p−1.

Since |z|p−1 = rp−1 < 1, rn+p−1 ≤ r and

∣∣Dq f (z)
∣∣ ≤ [p]q rp−1 + r

∞

∑
n=1

[n + p]q
∣∣an+p

∣∣ . (13)

Similarly, ∣∣Dq f (z)
∣∣ ≥ [p]q rp−1 − r

∞

∑
n=1

[n + p]q
∣∣an+p

∣∣ . (14)

Now, by using Equation (10), we get

Ψ1−p (1 + µ (2β− 1))
∞
∑

n=1
[n + p]q

∣∣an+p
∣∣ ≤

∞
∑

n=1
Ψn−p [n + p]q (1 + µ (2β− 1)) |an+p|.

This implies that
∞
∑

n=1
[n + p]q

∣∣an+p
∣∣ ≤ 2µβ[p]q(1−α)

(1+µ(2β−1))Ψ1−p
.

Finally, by using above relation in Equations (13) and (14), we have the result.

For q→ 1−, we have the following corollary.

Corollary 3. If f ∈ Hλ
p (α, µ, β) , then for |z| = r < 1

prp−1 − ϑr ≤
∣∣ f ′(z)∣∣ ≤ prp−1 + ϑr,

where

ϑ =
2µβ (1− α) p

(1 + µ (2β− 1))Ψ1−p
.

Theorem 4. If f ∈ Hλ
p,q (α, µ, β) , then f ∈ S∗p (δ) for |z| < r1, where

r1 =

(
(p− δ) (1 + µ (2β− 1))Ψn−p [n + p]q

2µβ (1− α) (δ− p) [p]q

) 1
n

.
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Proof. Let f ∈ Hλ
p,q (α, µ, β). To show that f ∈ S∗p (δ) , we have to prove that∣∣∣∣ z f ′(z)− p f (z)

z f ′(z) + (p− 2δ) f (z)

∣∣∣∣ < 1.

Using Equation (1), we conclude that

∞

∑
n=1

(
δ− p
p− δ

) ∣∣an+p
∣∣ |z|n < 1. (15)

From Equation (10), it can easily be obtained that

∞
∑

n=1

(
Ψn−p [n+p]q(1+µ(2β−1))|

[p]q2µβ(1−α)

) ∣∣an+p
∣∣ < 1.

The relation in Equation (15) is true, if the following holds

∞
∑

n=1

(
δ−p
p−δ

) ∣∣an+p
∣∣ |z|n <

∞
∑

n=1

(
Ψn−p [n+p]q(1+µ(2β−1))|

[p]q2µβ(1−α)

) ∣∣an+p
∣∣ ,

which implies that

|z|n <
(p− δ) (1 + µ (2β− 1))Ψn−p [n + p]q

2µβ (1− α) (δ− p) [p]q
.

Therefore,

|z| <
(
(p− δ) (1 + µ (2β− 1))Ψn−p [n + p]q

2µβ (1− α) (δ− p) [p]q

) 1
n

= r1.

Hence, we get the required result.

Letting p = 1 and q→ 1− in the last theorem, we get the result below.

Corollary 4. If f ∈ Hλ (α, µ, β) , then f ∈ S∗ (δ) for |z| < r1, where

r1 =

(
(1− δ) (1 + µ (2β− 1)) [(n + 1)Ψn−1

2µβ (1− α) (δ− 1)

) 1
n

.

Theorem 5. If f ∈ Hλ
p,q (α, µ, β) , then f ∈ Cp (δ) for |z| < r2, where

r2 =

(
p (p− δ) (1 + µ (2β− 1))Ψn−p [n + p]q

2µβ (1− α) [p]q (δ− p) (n + p)

) 1
n

.

Proof. Since f ∈ Cp (δ) , ∣∣∣∣ z f ′′(z)− (p− 1) f ′(z)
z f ′′(z) + (1− 2δ + p) f ′(z)

∣∣∣∣ < 1.

By using Equation (1) and after some simplifications, we get

∞

∑
n=1

(
(δ− p) (n + p)

p (p− δ)

) ∣∣an+p
∣∣ |z|n < 1. (16)

Now, from Equation (10), we can easily obtain that

∞
∑

n=1

(
(1+µ(2β−1))Ψn−p [n+p]q

2µβ(1−α)[p]q

) ∣∣an+p
∣∣ < 1.
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The relation in Equation (16) is true if

∞
∑

n=1

(
(δ−p)(n+p)

p(p−δ)

) ∣∣an+p
∣∣ |z|n <

∞
∑

n=1

(
(1+µ(2β−1))Ψn−p [n+p]q

2µβ(1−α)[p]q

) ∣∣an+p
∣∣ ,

which gives

|z|n <

(
p (p− δ) (1 + µ (2β− 1))Ψn−p [n + p]q

2µβ (1− α) [p]q (δ− p) (n + p)

)
.

Hence,

|z| <
(

p (p− δ) (1 + µ (2β− 1))Ψn−p [n + p]q
2µβ (1− α) [p]q (δ− p) (n + p)

) 1
n

= r2.

Thus, we obtain the required result.

Substituting p = 1 and taking q→ 1− in the last theorem, we get the corollary below.

Corollary 5. If f ∈ Hλ (α, µ, β) , then f ∈ C (δ) for |z| < r2, where

r2 =

(
(1− δ) (1 + µ (2β− 1))Ψn−1

2µβ (1− α) (δ− 1)

) 1
n

.

Theorem 6. Let fp (z) = zp and

fk (z) = zp +
2µβ (1− α) [p]q

(1 + µ (2β− 1))Ψk−2p [k]q ak
zk, (k ≥ n + p) . (17)

Then, f ∈ Hλ
p,q (α, µ, β) , if and only if it can be expressed in the form

f (z) = λpzp +
∞

∑
k=n+p

λk fk (z) , (18)

where λp ≥ 0, λk ≥ 0, k ≥ n + p and λp +
∞
∑

k=n+p
λk = 1.

Proof. We suppose that f can be written of the form of Equation (18), thus

f (z) = λpzp +
∞

∑
k=n+p

λk fk (z) ,

= λpzp +
∞

∑
k=n+p

λk

(
zp +

2µβ (1− α) [p]q
(1 + µ (2β− 1))Ψk−2p [k]q ak

zk

)

= zp +
∞

∑
k=n+p

2µβ (1− α) [p]q λk

(1 + µ (2β− 1))Ψk−2p [k]q ak
zk.

This implies that

∞
∑

k=n+p

(1+µ(2β−1))Ψk−2p [k]qak
2µβ(1−α)[p]q

×
2µβ(1−α)[p]q

(1+µ(2β−1))Ψk−2p [k]qak
λk

=
∞
∑

k=n+p
λk,

= 1− λp ≤ 1.
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Conversely, we suppose that fn ∈ Hλ
p,q (α, µ, β) . Then, by using Equation (10), we have

|ak| ≤
2µβ (1− α) [p]q

(1 + µ (2β− 1))Ψk−2p [k]q
, k ≥ p + n.

By setting

λk =
(1 + µ (2β− 1))Ψk−2p [k]q

2µβ (1− α) [p]q
ak,

then

f (z) = zp +
∞

∑
k=n+p

akzk

= zp +
∞

∑
k=n+p

2µβ (1− α) [p]q
(1 + µ (2β− 1))Ψk−2p [k]q ak

λkzk

= zp +
∞

∑
k=n+p

[zp − fk (z)] λk

=

(
1−

∞

∑
k=n+p

λk

)
zp +

∞

∑
k=n+p

λk fk (z)

= λpzp +
∞

∑
k=n+p

λk fk (z) .

This complete the result.

Putting p = 1, β = 1
2 and q→ 1− in the above theorem, we obtain the upcoming corollary.

Corollary 6. Let f (z) = z and

fk (z) = z +
µ (1− α)

kΨk−2ak
zk, (k ≥ n + 1) . (19)

Then, f ∈ H∗p
(

α, µ, 1
2

)
, if and only if it can be expressed in the form

f (z) = λz +
∞

∑
k=n+1

λk fk (z) , (20)

where λ ≥ 0, λk ≥ 0, k ≥ n + 1 and λ+
∞
∑

k=n+1
λk = 1.

Theorem 7. If f , g ∈ Hλ
p,q (α, µ, β) , then ( f ∗ g) ∈ Hλ

p,q (α, µ, β) , where

l ≥ µ

(
2lβ (1− α) [p]q
Ψn−p [n + p]q

− l (2β− 1)

)
. (21)

Proof. We have to find largest µ such that

∞

∑
n=1

(1 + µ (2β− 1))Ψn−p [n + p]q
2µβ (1− α) [p]q

an+pbn+p ≤ 1.
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Let f , g ∈ Hλ
p,q (α, µ, β) . Then, using Equation (10), we obtain

∞

∑
n=1

(1 + l (2β− 1))Ψn−p [n + p]q
2lβ (1− α) [p]q

an+p ≤ 1 (22)

and
∞

∑
n=1

(1 + l (2β− 1))Ψn−p [n + p]q
2lβ (1− α) [p]q

bn+p ≤ 1. (23)

By using Cauchy–Schwarz inequality, we have

∞

∑
n=1

(1 + l (2β− 1))Ψn−p [n + p]q
2lβ (1− α) [p]q

√
an+pbn+p ≤ 1. (24)

Thus, we have to show that

(1 + l (2β− 1))Ψn−p [n + p]q
2lβ (1− α) [p]q

an+pbn+p

≤
(1 + µ (2β− 1))Ψn−p [n + p]q

2µβ (1− α) [p]q

√
an+pbn+p,

that is √
an+pbn+p ≤

l (1 + µ (2β− 1))
µ (1 + l (2β− 1))

. (25)

In addition, from Equation (24), we can write

√
an+pbn+p ≤

2lβ (1− α) [p]q
(1 + l (2β− 1))Ψn−p [n + p]q

. (26)

Consequently, we have to show that

2lβ (1− α) [p]q
(1 + l (2β− 1))Ψn−p [n + p]q

≤ l (1 + µ (2β− 1))
µ (1 + l (2β− 1))

.

By simple calculation, we get

l ≥ µ

(
2lβ (1− α) [p]q
Ψn−p [n + p]q

− l (2β− 1)

)
,

which completes the required result.

Theorem 8. Let f1 and f2 be in the classHλ
p,q (α, µ, β) . Then, the weighted mean wq of f1 and f2 is also in the

classHλ
p,q (α, µ, β) .

Proof. From the definition of weighted mean, we have

wq =
1
2
[(1− q) f1 (z) + (1 + q) f2 (z)]

=

[
(1− q)

(
zp +

∞

∑
n=1

an+pzn+p

)
+ (1 + q)

(
zp +

∞

∑
n=1

bn+pzn+p

)]

= zp +
∞

∑
n=1

1
2
[
(1− q) an+p + (1 + q) bn+p

]
zn+p.
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Now, using Equation (10), we have

n

∑
n=1

Ψn−p [n + p]q (1 + µ (2β− 1)) an+p ≤ 2µβ [p]q (1− α)

and
n

∑
n=1

Ψn−p [n + p]q (1 + µ (1− 2β)) bn+p ≤ 2µβ [p]q (1− α) .

Consider [
∞

∑
n=1

Ψn−p [n + p]q (1 + µ (2β− 1))

] [
1
2
[
(1− q) an+p + (1 + q) bn+p

]]
=

1
2
(1− q)

∞

∑
n=1

Ψn−p [n + p]q (1 + µ (2β− 1)) an+p

+
1
2
(1 + q)

∞

∑
n=1

Ψn−p [n + p]q (1 + µ (2β− 1)) bn+p

≤ 1
2
(1− q) 2µβ [p]q (1− α) +

1
2
(1 + q) 2µβ [p]q (1− α) .

This shows that wq ∈ Hλ
p,q (α, µ, β) .

3. Applications

The q-calculus has played an important role in the study of almost every branch of mathematics
and physics, for example, in the theory of special functions, differential equations, combinatorics,
analytic number theory, quantum theory, quantum group, special polynomials, numerical analysis,
operator theory and other related theories. Quantum calculus is considered as one of the most active
research areas in mathematics and physics. For more details, please refer to [22,36–41].

4. Concluding Remarks and Observations

In this paper, we introduce a new integral operator J λ+p−1
q in q-analog and define the class

Hλ
p,q (α, µ, β) of multivalent functions by using this operator. Several useful properties such as

sufficiency criteria, distortion bounds, radius of starlikness and radius of convexity, extreme points,
weighted mean and partial sum for this newly defined subclass of multivalent functions are
investigated. In addition, we observe that, if we take some suitable parameters p, q, α, µ, β in the
results involved, we get the corresponding properties for q-analog of differential and integral operators
mentioned in the Introduction.
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