Estimates for a Rough Fractional Integral Operator and Its Commutators on p-Adic Central Morrey Spaces
Abstract
:1. Introduction
2. Boundedness of Rough -Adic Fractional Integral Operator on Central Morrey Spaces
- (i)
- If , then
- (ii)
- Ifthen
- (i)
- For , satisfies the following inequality:
- (ii)
- For , satisfies the following inequality
3. -Central Bounded Mean Oscillation Estimates of on Central Morrey Spaces
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bohner, M.; Tunç, O.; Tunç, C. Qualitative analysis of caputo fractional integro-differential equations with constant delays. Comp. Appl. Math. 2021, 40, 214. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Khan, H.; Chu, Y.M. On new fractional integral inequalities for p-convexity within interval-valued functions. Adv. Differ. Equ. 2020, 330, 17. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 363, 19. [Google Scholar] [CrossRef]
- Bosch, P.; Carmenate, H.J.; Rodríguez, J.M.; Sigarreta, J.M. Generalized inequalities involving fractional operators of the Riemann-Liouville type. AIMS Math. 2021, 7, 1470–1485. [Google Scholar] [CrossRef]
- Grafakos, L. Modern Fourier Analysis, 2nd ed.; Volume 250 of Graduate Texts in Mathematics; Springer: New York, NY, USA, 2008. [Google Scholar]
- Stein, M.E. Singular Integrals and Differentiability Properties of Functions; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Lacey, M.T.; Moen, K.; Pérez, C.; Torres, R.H. Sharp weighted bounds for fractional integral operators. J. Funct. Anal. 2010, 259, 1073–1097. [Google Scholar] [CrossRef] [Green Version]
- Salim, D.; Budhi, W.S.; Soeharyadi, Y. Rough Fractional Integral Operators on Local Morrey Spaces. J. Phys. Conf. Ser. 2019, 1180, 012012. [Google Scholar] [CrossRef]
- Wang, H. Estimates for Fractional Integral Operators and Linear Commutators on Certain Weighted Amalgam Spaces. J. Funct. Spaces 2020, 2020, 2697104. [Google Scholar] [CrossRef]
- Kozyrev, S.V. Methods and applications of ultrametric and p-adic analysis: From wavelet theory to biophysics. Proc. Steklov. Inst. Math 2011, 274, 1–84. [Google Scholar] [CrossRef]
- Sarfraz, N.; Aslam, M. Some weighted estimates for the commutators of p-adic Hardy operator on two weighted p-adic Herz-type spaces. AIMS Math. 2021, 6, 9633–9646. [Google Scholar] [CrossRef]
- Volosivets, S.S. Maximal function and Reisz potential on p-adic linear spaces, p-Adic Numbers. Ultrametric Anal. Appl. 2013, 5, 226–234. [Google Scholar] [CrossRef]
- Vladimirov, V.S. Tables of integrals of complex Valued Functions of p- Adic Arguments. Proc. Steklov. Inst. Maths. 2014, 284, 1–59. [Google Scholar] [CrossRef] [Green Version]
- Vladimirov, V.S.; Volovich, I.V.; Zelenov, E.I. p-Adic Analysis and Mathematical Physics; World Scientific: Singapore, 1994. [Google Scholar]
- Taibleson, M.H. Fourier Analysis on Local Fields; Princeton University Press: Princeton, NJ, USA; University of Tokyo Press: Tokyo, Japan, 1975. [Google Scholar]
- Haran, S. Riesz potentials and explicit sums in arithmetic. Invent. Math. 1990, 101, 697–703. [Google Scholar] [CrossRef]
- Haran, S. Analytic potential theory over the p-adics. Ann. Inst. Fourier 1993, 43, 905–944. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Mi, L.; Fu, Z.W. Hardy-Littlewood-Sobolev Inequalities on p-adic Central Morrey Spaces. J. Funct. Spaces 2015, 2015, 419532. [Google Scholar] [CrossRef] [Green Version]
- Volosivets, S.S. Generalized Fractional Integrals in p-Adic Morrey and Herz Spaces, p-Adic Numbers. Ultrametric Anal. Appl. 2017, 9, 53–61. [Google Scholar] [CrossRef]
- Ekincioglu, I.; Keskin, C.; Guliyev, R.V. Lipschitz estimates for rough fractional multilinear integral operators on local generalized Morrey spaces. Tbilisi Math. J. 2020, 13, 47–60. [Google Scholar] [CrossRef]
- Sarfraz, N.; Aslam, M.; Jarad, F. Boundedness for Commutators of Rough p-Adic Hardy Operator on p-Adic Central Morrey Spaces. J. Funct. Spaces 2021, 2021, 4886197. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Mi, L.; Fu, Z.W. Boundedness of p-adic Hardy Operators and their commutators on p-adic central Morrey and BMO spaces. J. Funct. Spaces Appl. 2013, 2013, 359193. [Google Scholar] [CrossRef]
- Fu, Z.W.; Wu, Q.Y.; Lu, S.Z. Sharp estimates of p-adic Hardy and Hardy-Littlewood-Pólya Operators. Acta Math. Sin. 2013, 29, 137–150. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarfraz, N.; Jarad, F. Estimates for a Rough Fractional Integral Operator and Its Commutators on p-Adic Central Morrey Spaces. Fractal Fract. 2022, 6, 117. https://doi.org/10.3390/fractalfract6020117
Sarfraz N, Jarad F. Estimates for a Rough Fractional Integral Operator and Its Commutators on p-Adic Central Morrey Spaces. Fractal and Fractional. 2022; 6(2):117. https://doi.org/10.3390/fractalfract6020117
Chicago/Turabian StyleSarfraz, Naqash, and Fahd Jarad. 2022. "Estimates for a Rough Fractional Integral Operator and Its Commutators on p-Adic Central Morrey Spaces" Fractal and Fractional 6, no. 2: 117. https://doi.org/10.3390/fractalfract6020117
APA StyleSarfraz, N., & Jarad, F. (2022). Estimates for a Rough Fractional Integral Operator and Its Commutators on p-Adic Central Morrey Spaces. Fractal and Fractional, 6(2), 117. https://doi.org/10.3390/fractalfract6020117