Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions
Abstract
:1. Introduction and Definitions
2. A Set of Lemmas
3. Main Results
3.1. Fekete–Szegö Problem
3.2. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Wisniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Goodman, A.W. On uniformly convex functions. Ann. Pol. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.G.; Jiang, Y.P. On certain subclasses of close to-convex and quasi-convex functions with respect to 2k-symmetric conjugate points. J. Math. Appl. 2007, 29, 167–179. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Pure Appl. Math. Q. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Mahmood, S.; Raza, M.; AbuJarad, E.S.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric properties of certain classes of analytic functions associated with a q-integral operator. Symmetry 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babes-Bolyai Math. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- Arif, M.; Barkub, O.; Srivastava, H.M.; Abdullah, S.; Khan, S.A. Some Janowski type harmonic q-starlike functions associated with symmetrical points. Mathematics 2020, 8, 629. [Google Scholar] [CrossRef]
- Arif, M.; Srivastava, H.M.; Uma, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. Rev. Real Acad. Cienc. Exactas Fis. Nat. A Mat. RACSAM 2019, 113, 1211–1221. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Aouf, M.K.; Mostafa, A.O. Some properties of analytic functions associated with fractional q-calculus operators. Miskolc Math. Notes 2019, 20, 1245–1260. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.G.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M. A study of some families of multivalent q-starlike functions involving higher-order q-derivatives. Mathematics 2020, 8, 1470. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M.; Ahmad, Q.Z. Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain. Mathematics 2020, 8, 1334. [Google Scholar] [CrossRef]
- Mahmood, S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Khan, B.; Tahir, M. A certain subclass of meromorphically q-starlike functions associated with the Janowski functions. J. Inequalities Appl. 2019, 2019, 88. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Volume 35 of Encyclopedia of Mathematics and Its Applications; Ellis Horwood: Chichester, UK, 1990. [Google Scholar]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Liu, M.S.; Xu, J.F.; Yang, M. Upper bound of second Hankel determinant for certain subclasses of analytic functions. Abstr. Appl. Anal. 2014, 2014, 603180. [Google Scholar] [CrossRef] [Green Version]
- Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of a really mean p-valent functions. Trans. Am. Soc. 1976, 233, 337–346. [Google Scholar]
- Dienes, P. The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable; New York-Dover Publishing Company: Mineola, NY, USA, 1957. [Google Scholar]
- Cantor, D.G. Power series with integral coefficients. Bull. Am. Math. Soc. 1963, 69, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Edrei, A. Sur les determinants recurrents et less singularities dune fonction donee por son developpement de Taylor. Comput. Math. 1940, 7, 20–88. [Google Scholar]
- Pólya, G.; Schoenberg, I.J. Remarks on de la Vallée Poussin means and convex conformal maps of the circle. Pac. J. Math. 1958, 8, 259–334. [Google Scholar]
- Janteng, A.; Abdulhalirn, S.; Darus, M. Coefficient inequality for a function whose derivative has positive real part. J. Inequalities Pure Appl. Math. 2006, 50, 1–5. [Google Scholar]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Gochhayat, P. Second Hankel determinant for a class of analytic functions defined by fractional derivative. Int. J. Math. Math. Sci. 2008, 2008, 153280. [Google Scholar] [CrossRef]
- Raza, M.; Malik, S.N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequalities Appl. 2013, 2013, 412. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Singh, G. On the second Hankel determinant for a new subclass of analytic functions. J. Math. Sci. Appl. 2014, 2, 1–3. [Google Scholar]
- Janteng, A.; Halim, A.S.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 2007, 619–625. [Google Scholar]
- Babalola, K.O. On H3(2) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2007, 6, 1–7. [Google Scholar]
- Thomas, D.K.; Halim, S.A. Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions. Bull. Malays. Math. Sci. Soc. 2017, 40, 1781–1790. [Google Scholar] [CrossRef]
- Ayinla, R.; Bello, R. Toeplitz determinants for a subclass of analytic functions. J. Progress. Res. Math. 2021, 18, 99–106. [Google Scholar]
- Radhika, V.; Sivasubramanian, S.; Murugusundaramoorthy, G.; Jahangiri, J.M. Toeplitz matrices whose elements are the coefficients of functions with bounded boundary rotation. J. Complex Anal. 2016, 2016, 4960704. [Google Scholar] [CrossRef] [Green Version]
- Radhika, V.; Sivasubramanian, S.; Murugusundaramoorthy, G.; Jahangiri, J.M. Toeplitz matrices whose elements are coefficients of Bazilevic functions. Open Math. 2018, 16, 1161–1169. [Google Scholar] [CrossRef]
- Ramachandran, C.; Kavitha, D. Toeplitz determinant for some subclasses of analytic functions. Glob. J. Pure Appl. Math. 2017, 13, 785–793. [Google Scholar]
- Srivastava, H.M.; Ahmad, Q.A.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz Determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Math. 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
- Al-Khafaji, S.N.; Al-Fayadh, A.; Hussain, A.H.; Abbas, S.A. Toeplitz determinant whose its entries are the coefficients for class of Non-Bazilevic functions. J. Phys. Conf. Ser. 2020, 1660, 012091. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Govindaraj, M.; Murugusundaramoorthy, G. Toeplitz matrices whose elements are the coefficients of analytic functions belonging to certain conic domains. Int. J. Pure Appl. Math. 2016, 109, 39–49. [Google Scholar]
- Zhang, H.Y.; Srivastava, R.; Tang, H. Third-order Henkel and Toeplitz determinants for starlike functions connected with the sine functions. Mathematics 2019, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.F.; Thomas, D.K.; Vasudevarao, A. Toeplitz determinants whose element are the coefficients of univalent functions. Bull. Aust. Math. Soc. 2018, 97, 253–264. [Google Scholar] [CrossRef]
- Abdel, H.; Gawad, D.; Thomas, K. The Fekete-Szegö problem for strong close-to-convex functions. Proc. Am. Math. Soc. 1992, 114, 345–349. [Google Scholar]
- Koepf, W. On the Fekete-Szegö problem for close-to-convex functions. Proc. Am. Math. Soc. 1987, 101, 89–95. [Google Scholar]
- Koepf, W. On the Fekete-Szegö problem for close-to-convex functions II. Arch. Math. 1987, 49, 420–433. [Google Scholar] [CrossRef]
- Aleman, A.; Constantin, A. Harmonic maps and ideal fluid flows. Arch. Ration. Mech. Anal. 2012, 204, 479–513. [Google Scholar] [CrossRef]
- Constantin, O.; Martin, M.J. A harmonic maps approach to fluid flows. Math. Ann. 2017, 316, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Duren, P.L. Univalent functions. In Grundlehren der Mathematischen Wissenschaften (Band 259); Springer: New York, NY, USA, 1983. [Google Scholar]
- Hussain, S.; Khan, S.; Roqia, G.; Darus, M. Hankel Determinant for certain classes of analytic functions. J. Comput. Theor. Nanosci. 2016, 13, 9105–9110. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.A.; Hussain, S. Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewiez, E.-J. Early coefficient of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewiez, E.-J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Efraimidis, I. A generalization of Livingston’s coefficient inequalities for functions with positive real part. J. Math. Anal. Appl. 2016, 435, 369–379. [Google Scholar] [CrossRef]
- Hayami, T.; Owa, S. Hankel determinant for p-valently starlike and convex functions of order α. Gen. Math. 2009, 17, 29–44. [Google Scholar]
- Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-shbeil, I.; Gong, J.; Khan, S.; Khan, N.; Khan, A.; Khan, M.F.; Goswami, A. Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions. Fractal Fract. 2022, 6, 658. https://doi.org/10.3390/fractalfract6110658
Al-shbeil I, Gong J, Khan S, Khan N, Khan A, Khan MF, Goswami A. Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions. Fractal and Fractional. 2022; 6(11):658. https://doi.org/10.3390/fractalfract6110658
Chicago/Turabian StyleAl-shbeil, Isra, Jianhua Gong, Shahid Khan, Nazar Khan, Ajmal Khan, Mohammad Faisal Khan, and Anjali Goswami. 2022. "Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions" Fractal and Fractional 6, no. 11: 658. https://doi.org/10.3390/fractalfract6110658
APA StyleAl-shbeil, I., Gong, J., Khan, S., Khan, N., Khan, A., Khan, M. F., & Goswami, A. (2022). Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions. Fractal and Fractional, 6(11), 658. https://doi.org/10.3390/fractalfract6110658