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Abstract: This paper considers the basic concepts of g-calculus and the principle of subordination.
We define a new subclass of g-starlike functions related to the Salagean g-differential operator. For
this class, we investigate initial coefficient estimates, Hankel determinants, Toeplitz matrices, and
Fekete-Szegd problem. Moreover, we consider the g-Bernardi integral operator to discuss some
applications in the form of some results.
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1. Introduction and Definitions

Let the set of all analytic functions g in the open unit disk
E={z:zeC and |[z| <1}

be denoted by 4 and every g € A can be expressed as
g(z) =z+ ) an2". 1)
n=2

Let S be the subset of A, whose functions are univalent in E. A function g € A is known as
a starlike function (denoted ¢ € §*) and a convex function (denoted g € K) if it satisfies

the following inequalities.
Zg’(2)>
Re >0, (z€E
(5e) >0 <o)

"

and
Re[1+ 28 )
§(2)
For 0 < a < 1, define the set $*(«) of starlike functions of order « and the set K(a) of
convex functions of order « as follows:

>0, (z€E).

zg (2)
8(z)

S*(w) = g€ A:Re >a, (z€E)
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and

K(a) = {geA:Re<1+Z§,(S)> > a, (ZGE)}-

In particular,

§*(0) =S8 and K(0) =K.

The class k — UCV of k-uniformly convex functions and the class k — US™ of k-
uniformly starlike functions were introduced by Kanas and Wisniowska [1,2], which are
defined by

/ /
k—US* = {geA:k‘Zg (z) —1' <Re(zg (Z)), z € E, kzo}

8(z) g(z)
and ) /
k—UCY = {geA:k(Z;gf)—l <Re<(zgg,((§)))),ze5,kzo}.

In particular, if we take k = 0, then k —US* = US™ and k — UCY = UCV introduced by
Goodman [3]. Moreover, Wang et al. [4] defined and investigated the subclasses S*(«, B)
and C(«, B) of analytic functions satisfy the following conditions, respectively.

+1

¥ 1| gle®@ 1 sek

and
(28'(2))’ (28'(2))’
~o 27 1l < ro V7
g f
where, 0 <a <1, 0< <1
Let g, 1 € A define their convolution by

(gxh)(z) =z+ ianbnz” = (hxg)(z),

where, g is given by (1) and

h(z) = izbnz”, (z € E).

Let P denote the well-known Carathéodory class of functions. An analytic function p € P
if it has the form

p(z) =1+ fj cnz”, )
n=1

and satisfies
Re(p(z)) > 0.

The study of g-calculus has recently inspired researchers because of its many appli-
cations in mathematics and physics, especially in quantum physics. Jackson [5,6] was
the first who introduced the g-analogues of derivatives by applying the g-calculus theory.
He defined the g-derivative operator (D;) for analytic function g in the open unit disk
U. Furthermore, in [7], Ismail et al. defined g-starlike functions by using the quantum
(or g-) calculus operator theory, and many researchers studied g-calculus in the perspec-
tive of Geometric Functions Theory (GFT). In 2014, Kanas and Raducanu [8] introduced
Ruscheweyh g-differential operators and discussed some of its applications in a class of
analytic functions related to conic domains. After that, many g-differential and integral op-
erators have been defined so far (see for details [9,10]. Arif et al. [11,12] studied g-derivative
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operator for multivalent functions, and in [13] Zang et al. gave the generalizations of the
conic domain by using g-calculus. Srivastava [14] used fractional g-calculus operators
to discuss some properties of analytic functions. Recently, Srivastava [15] published a
review article that benefits new researchers and scholars that are working in GFT and
g-calculus. Khan et al. [16,17] studied the g-derivative operator and defined a new sub-
class of g-starlike functions, while in [18] Mahmood et al. investigated a third Hankel
determinant for the class of g-starlike functions.

Presently, we recall some definitions and details about g-calculus, which will help us
to understand this new article.

Definition 1 ([19]). The g-number [t]; for q € (0,1) is defined as

_1-q
[t]4 Ty (teC).
In particular, t =n € N,
n—1
[”]q = 2 qk-
k=0
The g-factorial [n],! can be defined as
n
nlg! =] kg, (neN).
k=1

In particular, [0],! = 1.

Definition 2. The g-generalized Pochhammer symbol [t], 4, t € C, is defined as
(tlng = [tlglt + gt +2]4- - [t +n—1];, (n€N).

In particular, if n = 0, then [t]o 5 = 1.

Definition 3 (Jackson [6]). The g-integral for a function g is defined by
[ 82z = (1= q)z ¥ g(g"2)q"
k n=0
Definition 4 ([5]). For g € A, the q-derivative operator or g-difference operator is defined by

D) = S,z r0g2 ©

= 1+ Y [n]ga.z"""
n=2
Definition 5 ([20]). The Salagean q-differential operator for g is defined by

Sf;g(z) = gl(z), S,}g(Z) =zDyg(z) = g(qzq)__lg(z),. o

Si'¢(z) = zDg (S,;”*lg(z)) = ¢(z) * <z+ i[n]?z”)

[n]g'anz".

e

= Z+

n=2
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Motivated by the work of Kanas and Raducanu [8] and Govindaraj and Sivasubrama-
nian [20], we define the following class of functions with the help of g-calculus.

Definition 6. An analytic function g is said to be in the class S*(m, q,a, B) if

S;'8(z) aSy'g(z)
1 —1| < B|—L>2 41, z€E
‘ 5 ‘ Sre
where0 < a <1and 0 < p < 1.
Equivalently,
S;'8(z)
q
< 0(z), 4
FERRAL (4)
where 14 B
z
(z) = 1—aBz’
Note that

S*(m,q,a,) CS*CS.

Remark 1. If m = 1and g — 1—, then §*(m,q,a, ) = S*(«, B), which is introduced by
Liu et al. in [21].

Ifg=>1-,m=1,a=1,and g =1, then S*(m,q,a, B) = S*, which is the well known
class of starlike functions.

Noonan and Thomas [22] introduced the following jth Hankel determinants, where
n>0,j>1anda; =1

an Ap+1 0 Apgj-1
Ap+1 Gnt2 " Aptj
Hi(n) =] . . .
Ap+j—1 Bp+j -+ Ap42j-2

The Hankel determinant plays an important role in the theory of singularities [23] and
are helpful in the study of power series with integer coefficients (see [24-26]). Note that the
number of authors found the sharp upper bounds on #;(2) (see, for example, [27-31] for
numerous classes of functions.

If j = 2 and n = 1, we then obtain a well-known fact for the Fekete-Szegt functional that:

1 an

Ha(1) = P

= a3 —a%.

This functional was further generalized as follows,
‘ﬂa‘ - W%‘

for some real or complex number y.
If j = 2 and n = 2, then Janteng [32] defined the following Hankel determinant and
studied it for starlike functions.

_ |42 a3

2
= drd4 — ax.
as dg 2%4 3

Babalola [33] studied the Hankel determinant #3(1) for some subclasses of analytic functions.
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Recently, Thomas and Halim [34] introduced the symmetric Toeplitz determinant
Ti(n) for f € A, defined by:

an L |
An+1 an o Apgj-2
Tim) =] N ®)
an+j—1 an+]-_2 ce an

wheren > 1,j > 1 and a; = 1. In particular,

_ |92 43 _ |43 a4
T2 (2) - ﬂ3 612 7 T2 (3) - ll4 a3 7
1 ap aj ap 4az a4
T3(1) = ar 1 az|, T3 (2) = |az dp as|.
as dap 1 a, dads ap

Very recently, a large list of authors investigated estimates of the Toeplitz determi-
nant 7;(n) for functions belonging to different families of univalent functions (see, for
example, [34—40].

In recent years, studies on estimating the coefficient bounds for the Toeplitz determinants
for the class of univalent functions and its subclasses have been conducted by numerous
researchers, such as Srivastava et al. [39], Ramachand and Kavita [38], Al-Khafaji et al. [41],
Radnika et al. [36,37], Sivasupramanian et al. [42], Zhang et al. [43] and Ali et al. [44].

The problem of determining the sharp upper bounds for the functional |a, — pa3| for
a given compact family F of functions in the normalized analytic class A is often called
the Fekete-Szego problem for F. Many researchers have investigated the Fekete-Szego
problem for analytic functions (see [45-47]).

Aleman and Constantin [48] produced an admirable connection between univalent
function theory and fluid dynamics. They found explicit solutions to the incompressible
two-dimensional Euler equations by means of a univalent harmonic mapping. More
accurately, the problem of finding all solutions describing the particle paths of the flow
in Lagrangian variables was reduced to finding harmonic functions satisfying an explicit
nonlinear differential system in C" with n = 3 or n = 4 (see also [49]). The problem of
finding the best possible bounds for ||a,11| — |a,|| has a long history (see [50]). For more
details about the symmetric Toeplitz determinants, see [51,52].

2. A Set of Lemmas

In this section, we give some lemmas to investigate the main results of this paper.
Lemma 1 ([50]). Let the function p(z) be given by (2), then
using|cy| <2, n>1.
The inequality is sharp for the following function,
g(z) = (1+2)(1-2)"\

Lemma 2 ([53,54]). Let for some x, z € C, with |z| < 1and |x| < 1. Let the function p(z) be
analytic in E and given by (2), then

200 = +x(4—c}),

doz=c}+2(4—cHepx — (4—Aepx® + 24— 3 (1 - ‘xz’)z.
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Lemma 3 ([55]). Let the function p(z) be given by (2) and
Re(p(z)) > 0,
and let y € C, then
len — peken k] <2max(1,2u—1]), 1 <k<n—k.

In this section, we investigate initial coefficient estimates, Hankel determinants,
Toeplitz matrices and Fekete-Szego problems.

3. Main Results
In the following theorem, we will find initial coefficients bounds, which will help out
to prove other results.

Theorem 1. Let the function g of the form (1) be in the class S*(m, q,«, B). Then

B(l+a)
laz| < 21
BA(1+a) 1+a
ol < G )
ol = B an o ) + 4ol ).
q

where
B(l+a) [27 +[8]7 —2

Al(“/ﬁ/m/‘]):lxﬁ—l‘f‘ 7 (6)
2 m m
([2]q - 1) ([3]q - 1)
1_ap  @2F | plte) PRI -2
4 2 4 2 ([2];;171) ([3];171)
No(a,B,m,q) = 2 0. @)
% aB—1 + B(1+a) . B(1+a)
2 2([2}{7”71) 2([2];"71)
Proof. Let g € §*(m, q,, B), then we have
Sy'8(2)
q
< 0(z), 8
FERRAL ®)
or Ste(z)
g 8\%
———= = o(u(z)), 9
e = ew) ©)
where,
_ 1+pBz
9(z) = 1—aBz’
After some simple calculations, we obtain
¢p(z) =1+ B(1+a)z+af2(1+a)2 +a?B(1+a)B +---. (10)

Let

o -

= 1+clz+6222+---, (11)
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then
uz) = (p(z)-D(pzx)+1)7"

1 1 1,\, 1 135\ 4
frg — — — = — — — cee 12
zclz—|—2<cz 2c1>z +2<C3 clcz+4cl>z + (12)

In view of (9), (10) and (12), we have

¢(u(z))

= 1+ %[3(1 +a)ez+ { <;[$(1 + DC)) (Cz - ;ﬁ) + %zxﬁZ(l + ua)c%}zz

—i—%,B(l + zx){C3 + aPcicy —c100 + ic? — %c? + azfz C?}z3. (13)
Similarly,
S7'8(2)
8(2)
= 1+ ([?.];1 — 1)azz + { ([3];” — 1)113 — ([2];7 — 1)11%}22
+{ ([4];1 - 1)a4 - {[2]31 + B - 2}a2a3 + ([z]y - 1)ag}z3 L (14)

Equating the corresponding coefficients of (13) and (14), we have

o = PAt®a (15)
2([2];” - 1)

_ B(1+a) af—1 B(1+w) > 16
® 7 2y {”+ ( 2 +2<m;”—1)>”}’ "
a; = m{63+A1(oc,/3,m,q)c1cz—I—Az(a,ﬁ,m,q)c‘;’}, (17)

where

A (a, B,m,q) =af—1+ plLta) Py + Bl —2 , (18)

2 ([2];” —1)([3];"—1)
1_ap W2 p(l+a) 120+l -2
2 4 2 (1) (Bly 1)
Ao (o, B,m,q) = 2 . (19)
% aB—1 + B(1+a) . B(1+a)
2 2([2};"71) 2([2];”71)

Applying the Lemma 1 on (15)17), we obtained the desired result after some simplification. [J

In Theorem 2, we will investigate symmetric Toeplitz determinant T3(2).
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Theorem 2. Let the function g of the form (1) be in the class S*(m, q,a, B). Then
T3((2) < 4p(1+a){O+D(1+0s)}
X(Q4+4Q5+Q7+Qg 1—% ),
where
1 1
M = g O s 20
1 21 2 a1 (20)
Q3 = 2M1(w, B,m,q) + 402 (a, B,m,q), (21)
2
0, = (ﬁ(lnj"‘)) , (22)
2([2]q 1
1 2 A\ A
By —1 (21 =) (14l = 1)
O <,8(1+a)>2 4N A
o 2 m 2 m m ’
(B -1)" (12 —1) (14 - 1)
2
0 = 2 ([&(1};«) , (23)
2([3)! —1)
2
0s = (ﬁ(lzﬂ%)) ( . 1 . ) (24)
(2 =1) ([l —1)
As = zx[%z— 1 L ﬁ(l;— ) . 25)
2([2y 1)
Proof. As we know that T3(2) is given by
T3(2) = (ay — ay) (a% —2a} + a2a4),
where, a5, a3, and a4 are given by (15), (16), and (17).
Presently, if g € S*(m, q,a, B), then
laz —ay| < |az| + [ay],
< B(l+a)(OQ + (14 Q3)), (26)

where, ()1, (2, ()3 are given by (20) and (21).
We need to maximize ]a% — 211% + a2a4] for g € S*(m,q,a,B), so by writing a, as, ay
in terms of ¢y, c3, c3, with the help of (15)—(17), we obtain

’a% - 2a§ + a2a4’

IN

‘Q4c% — 05c‘11 — Q6c%c2 — ch§ + Qgcics

7

Q6C162
Qs |

IN

Q4C% + ()5(341L + Q7C% + Qgcylcz — (27)
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Using the Lemmas 1 and 3 along with (26) and (27), we have the required result. [

Wetakeqg -+ 1—, m = 1, = 1, and « = 1, we then have the following corollary
proved in [44].

Corollary 1 ([44]). Let the function g of the form (1) be in the class S*. Then
T3(2) < 84.
In Theorem 3, we will investigate the second Hankel determinant Hy(2).

Theorem 3. Let the function g of the form (1) be in the class S*(m, q,«, B). Then

2
i< (2

q

Proof. Making use of (15), (16), and (17), we obtain
aray — a%

B2(1+ ) { Qocicz + (QA1 — 2Q40A3)c3c, }
4 7

*0106% + (09/\2 — ()m/\%)czll

where
1 1

(1) (g -1)’ o= (B -1)"

By using Lemma 2 and taking Y = 4 — ¢ and Z = (1 - |x|2)z. Without loss of

generality, we assume that ¢ = ¢, (0 < ¢ < 2), so that

Qg =

aray — ﬂ%

1 2 Q Q Q
= (W) <A1c4 + ApYcPx — fYExZ - %YZxZ + 29YCZ>, (28)

where

@) Q
Moo= 2= oAy — OqAd +

D9 A1 — 20193
4 4 ’

2

Qg QoA —2000As O

M= 2 2

Applying for the modulus on both sides of (28) and using a triangle inequality,

‘a2a4 - a%’

(pugay

Qe [x[)-

[Aalet + ol Ye x| + | Y2 (x|

(1 - |x|2>cY

Yc2|x|2+ ’%

IN

Q.
+|%
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Since Q' (¢, |x|) > 00on [0,1], Q(c, |x|) is an increasing function in the interval [0,1], and the
maximum value occurs at x = 1:

MaxQ(c, [1]) = Q(c)
and hence

O

Q) = (M>2<|MIC4+ A2|Yc* + ‘(319 7

2

Yc2+‘

)

Putting Y =4 — c%, after some simplification, we have

_(B+a))? M| = [Ag] — || + | Do)t
Q= <2> ( +(£I/\21|+029| ‘20‘10|)‘c +2|Qw| )

Let Q' (c) = 0, the optimum value of Q(c) implies that ¢ = 0. So Q(c) has the
maximum value at ¢ = 0, which is given by

2
4(Mﬁj”>|ﬂmL 29)

which occurs at ¢ = 0 or

' 4|/\2| + Q9| — 2|Qlo|)

(B2) (1l = s -

o
+))
5 in (29), we obtained the desired result. [

1
(By-1)

Corollary 2 ([32]). If an analytic function g € S*(1,1,1,9 — 1—) = S*, then

By putting ()19 =

’a2a4 - a%‘ <1

3.1. Fekete—Szego Problem

In this section, we will prove the Fekete-Szeg6 problem for the class S* (m,q,u,B) of
analytic functions.

Theorem 4. Let the function g of the form (1) be in the class S*(m, q, «, B). Then

B(
+ap
B(1+a) <[21 o<y <
[2]"’1 l ‘l'l
B(1+a) il o <
a2 — ] < (i55-1)" Trsrse )
Bl+a) ((qym

=G 1)7‘ ,
Allre) if i > p
(Bly-1) B(1+) =z

q ﬁ + [z]m 1

where, p1 and p, are given by (32) and (33).
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Proof. From (15) and (16), we derive

S R o [t
where
Ay = aﬁ—1+ B(l+a) (31)

2 2([2];” _ 1)'
_ B(l+a) m
-2l -n) (337 1)

Applying Lemma 2, if c = ¢ (0 < ¢ < 2), then

] = a1+ (-]
= Jp)-
Applying the triangle inequality, we deduce
J(o) < M{(ZM —2Agpu+1)| + (4 - cz)}
B(1+u)

{aﬁ + 1[32(]1"1—’__“1) —H ('B(l +[Z])n§[i]z _ 1) ) }c2 + (4 - CZ)] .

q

4([3];” —1)

It follows that

/3(1+a)1 {Qi(a, B, u)c® +4}, ifpu<py,

4([3ly 1)
a3 — o3| < o
- 2 .
4([3];”71) {Qo(a, B, u)c* + 4}, ifu>ps.
where
b = {ﬁ(l”f—“) (1- (11 —1)n) —Hxﬁ—l}
2] -1
) B+ a) fm 501+ a)
Qa(a, B ) = { [z]q’”—l ([3]51 —1)]1— (zx,B—1+ [2]21 1)}
Therefore,

S TR (S o

o2 = ’ (33)
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’féf;f_“l) Qs(w,B,p),  ifu<jz c=2
B if} <p<py,c=0,
‘ag — ya%‘ < (34)
%, ifp Sp<ppc=0,
%ﬁff‘l} Qu(a, B )  ifp>pyc=2
where,
 fpasay . BOE0(Bl 1)
Q3(“rﬁrﬂ) - { [2}31 1 +‘Xﬁ [2]21 1 Mo, (35)
_ Bt a) o B(1+a)
Qi) = { B e () (36)

So we can obtain the required result (30) by using Equations (35) and (36) in inequality (34). O

Forq - 1-,m =1, =1,and « = 1 in Theorem 4, we thus obtain the following
known result.

Corollary 3 ([56]). Let the function g of the form (1) be in the class S*. Then
3—4y, ifu < %,
a3 — a3 < 4 1 ify <u<i,
4u -3, ifu>1.

Theorem 5. Let the function g of the form (1) be in the class S*(m, q, «, B). Then

‘{13 - ya%’ < Wmax{l, 20 -1}, n € C, (37)
q

where

v= 1 — As. (38)

Proof. It follows from (15) and (16) that

‘ﬂg, — ya%‘ = M{cz - vc%}, (39)

where, A3 is given by (31). Now by using Lemma 3 on (39), we get the required result. [

3.2. Applications

In this section, we provide g-analogue of the Bernardi integral operator to discuss
some applications of our main results.
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In [57], Noor et al. defined g-analogue of Bernardi integral operator for analytic
functions g € A as follows:

1+ z
Bi(z) = [ Zﬁﬁ]" /0 tP1o(t)dgt (40)
= z+y;[n+'8]qanz,zeE,/3>—l,
= z+ i Bhayz". (41)
n=2

Remark 2. For g — 1—, we obtain the Bernardi integral operator studied in [58].

Theorem 6. Let the function g of the form (1) be in the class S*(m,q, «, ) and Bg(z) is given
by (41). Then

la2] < '3(17""”‘),
~ (prr-1)B
lag| < P+ {tx—l— L },
(Blr-1)8 | (2 -1)8
lag| < M{er@l(a,ﬁ,m,q)+4Dz(zx,/3,m,q)},
(14l —1) B4

where

B(1+a) ( (Rl + @Iy -2) 8315’2) }

Di(a, B,m,q) = {“ﬁ—” 20\ (= -1) (18l - 1)

1_ap  2F | plita) 1207+ 31 —2) Bs 552

Dy(w, B,m,q) = P : 2 ([2];”71)([3}';71)
. w | *B1 4 pA+e) ) [ B(+a)
2 2([2];”—1) 2([2]2”—1)82

Proof. The proof follows easily by using (41) and Theorem 1. [J

Theorem 7. If the function Bg (z) is given by (41) belongs to the class S*(m, q,«, B). Then

2
. B(1+a)
‘a2a4 %‘ = (([3};”—1)63) '

Proof. The proof follows easily by using (41) and Theorem 3. [J

Theorem 8. If the function BZ(Z) is given by (41) belongs to the class S*(m,q, «, B). Then

B(1+a)
(Bl =1)Bs

a3 — a3 < max{1, 200 ~ 1|}, p € C,
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where

D af—1 B(l+a) ’
’ 2 +2([2};”—1)Bl

" B(1 +zx)([3]g1 - 1)Bgy e

2([2y —1)28%

Proof. The proof follows easily by using (41) and Theorem 5. [J

4. Conclusions

The work presented in this paper is motivated by the well-established usage of the
basic (or g-) calculus in the context of Geometric Function Theory. For this class, we
investigated Hankel determinants, Toeplitz matrices and Fekete-Szeg6 problems. Moreover,
the g-Bernardi integral operator is used to discuss some applications of the main results
of this paper. Moreover, for validity of our results, the relevant connections with those in
earlier works are also pointed out.

In a review article [15], Srivastava explained that (p, )-calculus was exposed to be a
rather trivial and inconsequential variation of the classical g-calculus and the additional
parameter p being redundant or superfluous (for detail see [37], p. 340). According to
this observation of Srivastava [15] will indeed apply to any attempt to produce the rather
straightforward and inconsequential (p, q)-variations of the results, which we have proved
in this paper.
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