Optimal Control for k × k Cooperative Fractional Systems
Abstract
:1. Introduction
2. Preliminaries
2.1. Fractional Sobolev Spaces
2.2. Extension Sobolev Spaces
2.3. Eigenvalue Problem
3. Cooperative Fractional Systems
3.1. The Weak Solution
3.2. The Optimality Conditions
3.2.1. Fractional Optimal Control
3.2.2. Extended Optimal Control
4. Summary and Conclusions
5. Open Problems
- Study the control problems for cooperative fractional parabolic systems in the form
- Study the control problems for cooperative time and space fractional systems in the form
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz, J. Local and Nonlocal Optimal Control in the Source. Mediterr. J. Math. 2022, 19, 27. [Google Scholar] [CrossRef]
- Rabczuk, T.; Ren, H.; Zhuang, X. A Nonlocal Operator Method for Partial Differential Equations with Application to Electromagnetic Waveguide Problem. Comput. Mater. Contin. 2019, 59, 31–55. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Zhuang, X.; Trung, N.-T.; Rabczuk, T. A nonlocal operator method for finite deformation higher-order gradient elasticity. Comput. Methods Appl. Mech. Eng. 2021, 384, 113963. [Google Scholar] [CrossRef]
- Seyedi, S.H.; Zayernouri, M. A data-driven dynamic nonlocal subgrid-scale model for turbulent flows. Phys. Fluids 2022, 34, 035104. [Google Scholar] [CrossRef]
- Ceng, L.C.; Fu, Y.X.; Yin, J.; He, L.; He, L.; Hu, H.Y. The solvability of generalized systems of time-dependent hemivariational inequalities enjoying symmetric structure in reflexive Banach spaces. Symmetry 2021, 13, 1801. [Google Scholar] [CrossRef]
- Lions, J.L. Optimal Control of Systems Governed by Partial Differential Equations; Springer: Berlin, Germany, 1971. [Google Scholar]
- Lions, J.L. Some Methods in the Mathematical Analysis of Systems and Their Control; Science Press: Beijing, China, 1981. [Google Scholar]
- Ceng, L.C.; Wen, C.F.; Yao, J.C.; Yao, Y. A system of evolution problems driven by a system of hemivariational inequalities. J. Nonlinear Sci. Appl. 2018, 11, 342–357. [Google Scholar] [CrossRef] [Green Version]
- Gali, I.M.; Serag, H.M. Optimal control of cooperative elliptic systems defined onRn. J. Egypt. Math. Soc. 1995, 3, 33–39. [Google Scholar]
- Fleckinger, J.; Serag, H.M. Semilinear cooperative elliptic systems on Rn. Rend. Mat. Appl. 1995, 15, 98–108. [Google Scholar]
- Guo, B.; Pu, X.; Huang, F. Fractional Partial Differential Equations and Their Numerical Solutions; World Scientific: Beijing, China, 2015. [Google Scholar]
- Hyder, A.; El-Badawy, M. Fractional optimal control of Navier-Stokes equations. Comput. Mater. Contin. 2020, 64, 859–870. [Google Scholar] [CrossRef]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Hackensack, NJ, USA, 2014. [Google Scholar]
- Abdelhakem, M.; Mahmoud, D.; Baleanu, D. Shifted ultraspherical pseudo-Galerkin method for approximating the solutions of some types of ordinary fractional problems. Adv. Differ. Equ. 2021, 2021, 110. [Google Scholar] [CrossRef]
- Abdelhakem, M.; Abdelhamied, D.; Alshehri, M.G.; El-kady, M. Shifted Legendre fractional pseudospectral differentiation matrices for solving fractional differential problems. Fractals 2022, 30, 2240038. [Google Scholar] [CrossRef]
- Abdelhakem, M.; Moussa, H.; Baleanu, D.; El-Kady, M. Shifted Chebyshev schemes for solving fractional optimal control problems. J. Vib. Control 2019, 25, 2143–2150. [Google Scholar] [CrossRef]
- Mophou, G.M. Optimal control of fractional diffusion equation. Comput. Math. Appl. 2011, 62, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Mophou, G.M. Optimal control of fractional diffusion equation with state constraints. Comput. Math. Appl. 2011, 62, 1413–1426. [Google Scholar] [CrossRef] [Green Version]
- Hyder, A.; El-Badawy, M. Distributed control for time fractional differential system involving Schrödinger operator. J. Funct. Spaces 2019, 2019, 1389787. [Google Scholar] [CrossRef] [Green Version]
- Antil, H.; Otarola, E. A FEM for an Optimal Control Problem of Fractional Powers of Elliptic Operators. SIAM J. Control Optim. 2015, 53, 3432–3456. [Google Scholar] [CrossRef]
- Antil, H.; Otarola, E.; Salgado, A.J. Optimization with respect to order in a fractional diffusion model: Analysis, approximation and algorithmic aspects. J. Sci. Comput. 2018, 77, 204–224. [Google Scholar] [CrossRef] [Green Version]
- D’Elia, M.; Glusa, C.; Otarola, E. A priori error estimates for the optimal control of the integral fractional Laplacian. SIAM J. Control Optim. 2019, 57, 2775–2798. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.C.; Baleanu, D. Discrete fractional logistic map and its chaos. Nonlinear Dyn. 2014, 75, 283–287. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Zeng, S.D. Discrete chaos in fractional sine and standard maps. Phys. Lett. 2014, A378, 484–487. [Google Scholar] [CrossRef]
- Lizama, C.; Murillo-Arcila, M.; Peris, A. Nonlocal operators are chaotic. Chaos 2020, 30, 103126. [Google Scholar] [CrossRef] [PubMed]
- Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian. Commun. Partial. Differ. Equ. 2017, 32, 1245–1260. [Google Scholar] [CrossRef]
- Tartar, L. An Introduction to Sobolev Spaces and Interpolation Spaces; Volume 3 of Lecture Notes of the Unione Matematica Italiana; Springer: Berlin, Germany, 2007. [Google Scholar]
- Lions, J.L.; Magenes, E. Non-Homogeneous Boundary Value Problems and Applications Volume I; Springer: New York, NY, USA, 1972. [Google Scholar]
- Tian, Y. Some results on the eigenvalue problem for a fractional elliptic equation. Bound. Value Probl. 2019, 2019, 13. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serag, H.M.; Hyder, A.-A.; El-Badawy, M.; Almoneef, A.A. Optimal Control for k × k Cooperative Fractional Systems. Fractal Fract. 2022, 6, 559. https://doi.org/10.3390/fractalfract6100559
Serag HM, Hyder A-A, El-Badawy M, Almoneef AA. Optimal Control for k × k Cooperative Fractional Systems. Fractal and Fractional. 2022; 6(10):559. https://doi.org/10.3390/fractalfract6100559
Chicago/Turabian StyleSerag, Hassan M., Abd-Allah Hyder, Mahmoud El-Badawy, and Areej A. Almoneef. 2022. "Optimal Control for k × k Cooperative Fractional Systems" Fractal and Fractional 6, no. 10: 559. https://doi.org/10.3390/fractalfract6100559
APA StyleSerag, H. M., Hyder, A. -A., El-Badawy, M., & Almoneef, A. A. (2022). Optimal Control for k × k Cooperative Fractional Systems. Fractal and Fractional, 6(10), 559. https://doi.org/10.3390/fractalfract6100559