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Abstract: This article presents certain families of analytic functions regarding q-starlikeness
and q-convexity of complex order γ (γ ∈ C\ {0}). This introduced a q-integral operator and
certain subclasses of the newly introduced classes are defined by using this q-integral operator.
Coefficient bounds for these subclasses are obtained. Furthermore, the (δ, q)-neighborhood of analytic
functions are introduced and the inclusion relations between the (δ, q)-neighborhood and these
subclasses of analytic functions are established. Moreover, the generalized hyper-Bessel function is
defined, and application of main results are discussed.

Keywords: Geometric Function Theory; q-integral operator; q-starlike functions of complex order;
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1. Introduction

Recently, many researchers have focused on the study of q-calculus keeping in view its wide
applications in many areas of mathematics, e.g., in the q-fractional calculus, q-integral calculus,
q-transform analysis and others (see, for example, [1,2]). Jackson [3] was the first to introduce and
develop the q-derivative and q-integral. Purohit [4] was the first one to introduce and analyze a class in
open unit disk and he used a certain operator of fractional q-derivative. His remarkable contribution
was to give q-extension of a number of results that were already known in analytic function theory.
Later, the q-operator was studied by Mohammed and Darus regarding its geometric properties on
certain analytic functions, see [5]. A very significant usage of the q-calculus in the context of Geometric
Function Theory was basically furnished and the basic (or q-) hypergeometric functions were first
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used in Geometric Function Theory in a book chapter by Srivastava (see, for details, [6] pp. 347 et seq.;
see also [7]). Earlier, a class of q-starlike functions were introduced by Ismail et al. [8]. These are the
generalized form of the known starlike functions by using the q-derivatives. Sahoo and Sharma [9]
obtained many results of q-close-to-convex functions. Also, some recent results and investigations
associated with the q-derivatives operator have been in [6,10–13].

It is worth mentioning here that the ordinary calculus is a limiting case of the quantum calculus.
Now, we recall some basic concepts and definitions related to q-derivative, to be used in this work.
For more details, see References [3,14–16].

The quantum derivative (named as q-derivative) of function f is defined as:

Dq f (z) =
f (z)− f (qz)
(1− q)z

(z 6= 0; 0 < q < 1).

We note that Dq f (z) −→ f ′(z) as q −→ 1− and Dq f (0) = f ′(0), where f ′ is the ordinary
derivative of f .

In particular, q-derivative of h(z) = zn is as follows :

Dqh(z) = [n]qzn−1, (1)

where [n]q denotes q-number which is given as:

[n]q =
1− qn

1− q
(0 < q < 1). (2)

Since we see that [n]q −→ n as q −→ 1−, therefore, in view of Equation (1), Dqh(z) −→ h′(z) as
q −→ 1−, where h′ represents ordinary derivative of h.

The q-gamma function Γq is defined as:

Γq(t) = (1− q)1−t
∞

∏
n=0

1− qn+1

1− qn+t (t > 0; 0 < q < 1), (3)

which has the following properties:

Γq(t + 1) = [t]qΓq(t) (4)

and
Γq(t + 1) = [t]q! , (5)

where t ∈ N and [.]q! denotes the q-factorial and defined as:

[t]q! =

{
[t]q[t− 1]q . . . [2]q[1]q, t = 1, 2, 3, . . . ;
1, t = 0.

(6)

Also, the q-beta function Bq is defined as:

Bq(t, s) =
∫ 1

0
xt−1(1− qx)s−1

q dqx (t, s > 0; 0 < q < 1), (7)

which has the following property:

Bq(t, s) =
Γq(s)Γq(t)
Γq(s + t)

, (8)

where Γq is given by Equation (3).
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Furthermore, q-binomial coefficients are defined as [17]:(
n
k

)
q
=

[n]q!
[k]n![n− k]q!

, (9)

where [.]q! is given by Equation (6).
We consider the class A comprising the functions that are analytic in open unit disc

U = {z ∈ C : |z| < 1} and are of the form given as:

f (z) = z +
∞

∑
n=2

anzn. (10)

Using Equation (1), the q-derivative of f , defined by Equation (10) is as follows:

Dq f (z) = 1 +
∞

∑
n=2

[n]qanzn−1 (z ∈ U; 0 < q < 1), (11)

where [n]q is given by Equation (2).
The two important subsets of the class A are the families S∗ consisting of those functions that

are starlike with reference to origin and C which is the collection of convex functions. A function f
is from S∗if for each point x ∈ f (U) the linear segment between 0 and x is contained in f (U) . Also,
a function f ∈ C if the image f (U) is a convex subset of complex plane C, i.e., f (U) must have every
line segment that joins its any two points.

Nasr and Aouf [18] defined the class of those functions which are starlike and are of complex
order γ (γ ∈ C\ {0}), denoted by S∗(γ) and Wiatrowski [19] gave the class of similar type convex
functions i.e., of complex order γ (γ ∈ C\ {0}), denoted by C(γ) as:

S∗(γ) =
{

f ∈ A : <
(

1 +
1
γ

(
z f ′(z)

f (z)
− 1
))

> 0 (z ∈ U; γ ∈ C\ {0})
}

(12)

and

C(γ) =
{

f ∈ A : <
(

1 +
1
γ

z f ′′(z)
f ′(z)

)
> 0 (z ∈ U; γ ∈ C\ {0})

}
, (13)

respectively.
From Equations (12) and (13), it is clear that S∗(γ) and C(γ) are subclasses of the class A.
The class denoted by S∗q(µ) of such q-starlike functions that are of order µ is defined as:

S∗q(µ) =

{
f ∈ A : <

(
zDq f (z)

f (z)

)
> µ (z ∈ U; 0 ≤ µ < 1)

}
. (14)

Also, the class Cq(µ) of q-convex functions of order µ is defined as:

Cq(µ) =

{
f ∈ A : <

(
Dq(zDq f (z))

Dq f (z)

)
> µ (z ∈ U; 0 ≤ µ < 1)

}
. (15)

For more detail, see [20]. From Equations (14) and (15), it is clear that S∗q (µ) and Cq(µ) are
subclasses of the class A.

Next, we recall that the δ-neighborhood of the function f (z) ∈ A is defined as [21]:

Nδ( f ) =

{
g(z) = z +

∞

∑
n=2

bnzn
∣∣∣∣ ∞

∑
n=2

n |an − bn| ≤ δ

}
(δ ≥ 0). (16)
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In particular, the δ-neighborhood of the identity function p(z) = z is defined as [21]:

Nδ(p) =

{
g(z) = z +

∞

∑
n=2

bnzn
∣∣∣∣ ∞

∑
n=2

n |bn| ≤ δ

}
(δ ≥ 0). (17)

Finally, we recall that the Jung-Kim-Srivastava integral operator Qα
β : A → A are defined as [22]:

Qα
β f (z) =

(
α + β

β

)
α

zβ

∫ z

0
tβ−1

(
1− t

z

)α−1
f (t)dt

=z +
Γ(α + β + 1)

Γ(β + 1)

∞

∑
n=2

Γ(β + n)
Γ(α + β + n)

anzn (β > −1; α > 0; f ∈ A). (18)

The Bessel functions are associated with a wide range of problems in important areas of
mathematical physics and Engineering. These functions appear in the solutions of heat transfer
and other problems in cylindrical and spherical coordinates. Rainville [23] discussed the properties of
the Bessel function.

The generalized Bessel functions wν,b,d(z) are defined as [24]:

wν,b,d(z) =
∞

∑
n=0

(−d)n

n!Γ
(

ν + n +
b + 1

2

) ( z
2

)2n+ν
, (19)

where ν, b, d, z ∈ C.
Orhan, Deniz and Srivastava [25] defined the function ϕν,b,d(z) : U→ C as:

ϕν,b,d(z) = 2νΓ
(

ν +
b + 1

2

)
z
−

ν

2 wν,b,d(
√

z), (20)

by using the Generalized Bessel function wν,b,d(z), given by Equation (12).
The power series representation for the function ϕν,b,d(z) is as follows [25]:

ϕν,b,d(z) =
∞

∑
n=0

(−d/4)n

(c)nn!
zn, (21)

where c = ν +
b + 1

2
> 0, ν, b, d ∈ R and z ∈ U = {z ∈ C : |z| < 1} .

The hyper-Bessel function is defined as [26]:

Jαd(z) =
∞

∑
n=0

(z/d + 1)α1+...αd

Γ(α1 + 1) . . . Γ(αd + 1) 0Fd

(
−, (αd + 1);−

(
z

d + 1

)d+1
)

, (22)

where the hypergeometric function pFq is defined by:

pFq
(
(βp); (ηq); x

)
=

∞

∑
n=0

(β1)n(β2)n . . . (βp)n

(α1)n(α2)n . . . (αq)n

xn

n!
, (23)

using above Equation (23) in Equation (22), then the function Jαd(z) has the following power series:

Jαd(z) =
∞

∑
n=0

(−1)n

n!Γ (α1 + n + 1) Γ (α2 + n + 1) . . . Γ (αd + n + 1)

(
z

d + 1

)n(d+1)+α1+...αd

, (24)
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By choosing d = 1 and putting α1 = ν, we get the classical Bessel function

Jν(z) =
∞

∑
n=0

(−1)n

n!Γ (ν + n + 1)
z2n+ν. (25)

In the next section, we introduce the classes of q-starlike functions that are of complex order
γ (γ ∈ C\ {0}) and similarly, q-convex functions that are of complex order γ (γ ∈ C\ {0}), which are
denoted by S∗q (γ) and Cq(γ), respectively. Also, we define a q-integral operator and define the
subclasses Sq(α, β, γ) and Cq(α, β, γ) of the class A by using this q-integral operator. Then, we find the
coefficient bounds for these subclasses.

First, we define the q-starlike function of complex order γ (γ ∈ C\ {0}), denoted by S∗q (γ) and
the q-convex function of complex order γ (γ ∈ C\ {0}), denoted by Cq(γ) by taking the q-derivative
in place of ordinary derivatives in Equations (12) and (13), respectively.

The respective definitions of the classes S∗q (γ) and Cq(γ) are as follows:

Definition 1. The function f ∈ A will belong to the class S∗q (γ) if it satisfies the following inequality:

<
(

1 +
1
γ

(
zDq f (z)

f (z)
− 1
))

> 0 (γ ∈ C\ {0} , 0 < q < 1). (26)

Definition 2. The function f ∈ A will belong to the class Cq(γ) if it satisfies the following inequality:

<
(

1 +
1
γ

(
Dq
(
zDq f (z)

)
Dq f (z)

))
> 0 (γ ∈ C\ {0} , 0 < q < 1). (27)

Remark 1. (i) If γ ∈ R and γ = 1− µ (0 ≤ µ < 1), then the subclasses S∗q (γ) and Cq(γ) give the sub
classes S∗q (µ) and Cq(µ), respectively.

(ii) Using the fact that limq→1− Dq f (z) = f ′(z), we get that limq→1− S∗q (γ) = S∗(γ) and
limq→1− Cq(γ) = C(γ).

Now, we introduce the q-integral operator χα
β,q as:

χα
β,q f (z) =

(
α + β

β

)
q

[α]q

zβ

∫ z

0
tβ−1

(
1− qt

z

)α−1

q
f (t)dqt

(α > 0; β > −1; 0 < q < 1; |z| < 1; f ∈ A).
(28)

It is clear that χα
β,q f (z) is analytic in open disc U.

Using Equations (4), (5) and (7)–(9), we get the following power series for the function χα
β,q f in U:

χα
β,q f (z) = z +

∞

∑
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

anzn (α > 0; β > −1; 0 < q < 1; f ∈ A). (29)

Remark 2. For q −→ 1−, Equation (29), gives the Jung-Kim-Srivastava integral operator Qα
β, given by

Equation (18).

Remark 3. Taking α = 1 in Equation (28) and using Equations (4), (5) and (9), we get the q-Bernardi integral
operator, defined as [27]:

F (z) =
[1 + β]q

zβ

∫ z

0
tβ−1 f (t)dqt β = 1, 2, 3, . . .
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Next, in view of the Definitions 1 and 2 and the fact that <(z) < |z|, we introduce the subclasses
Sq(α, β, γ) and Cq(α, β, γ) of the classes S∗q (γ) and Cq(γ), respectively, by using the operator χα

β,q, as:

Definition 3. The function f ∈ A will belong to Sq(α, β, γ) if it satisfies the following inequality:∣∣∣∣∣ zDq(χα
β,q f (z))

χα
β,q f (z)

− 1

∣∣∣∣∣ < |γ|, (30)

where α > 0; β > −1; 0 < q < 1; γ ∈ C\ {0}.

Definition 4. The function f ∈ A will belong to Cq(α, β, γ) if it satisfies the following inequality:∣∣∣∣∣∣
Dq

(
zDqχα

β,q f (z)
)

Dqχα
β,q f (z)

∣∣∣∣∣∣ < |γ|, (31)

where α > 0; β > −1; 0 < q < 1; γ ∈ C\ {0}.

Now, we establish the following result, which gives the coefficient bound for the subclass
Sq(α, β, γ):

Lemma 1. If f is an analytic function such that it belongs to the class Sq(α, β, γ), then

∑∞
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

(
[n]q − |γ| − 1

)
an < |γ| (α > 0; β > −1; 0 < q < 1; γ ∈ C\ {0}), (32)

where Γq and [n]q are given by Equations (3) and (2), respectively.

Proof. Let f ∈ A, then using Equations (11) and (29), we have

∣∣∣∣∣ zDq(χα
β,q f (z))

χα
β,q f (z)

− 1

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
z + ∑∞

n=2
Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

[n]qanzn

z + ∑∞
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

anzn
− 1

∣∣∣∣∣∣∣∣∣ . (33)

If f ∈ Sq(α, β, γ), then in view of Definition 3 and Equation (33), we have∣∣∣∣∣∣∣∣∣
z + ∑∞

n=2
Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

[n]qanzn

z + ∑∞
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

anzn
− 1

∣∣∣∣∣∣∣∣∣ < |γ|,
which, on simplifying, gives∣∣∣∣∣∣∣∣∣

∑∞
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

(
[n]q − 1

)
anzn−1

1 + ∑∞
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

anzn−1

∣∣∣∣∣∣∣∣∣ < |γ|. (34)
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Now, using the fact that <(z) < |z| in the Inequality (34), we get

<


∑∞

n=2
Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

(
[n]q − 1

)
anzn−1

1 + ∑∞
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

anzn−1

 < |γ|. (35)

Since χα
β,q f (z) is analytic in U, therefore taking limit z → 1—through real axis, Inequality (35),

gives the Assertion (32).

Also, we establish the following result, which gives the coefficient bound for the subclass
Cq(α, β, γ):

Lemma 2. If f is an analytic function such that it belongs to the class Cq(α, β, γ) and |γ| ≥ 1 then

∑∞
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

([n]q
(
[n]q − |γ|

)
)an < |γ| − 1 (α > 0; β > −1; 0 < q < 1; γ ∈ C\ {0}), (36)

where Γq and [n]q are given by Equations (3) and (2), respectively.

Proof. Let f ∈ A, then using Equations (11) and (29), we get

∣∣∣∣∣∣
Dq

(
zDqχα

β,q f (z)
)

Dqχα
β,q f (z)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
1 + ∑∞

n=2
Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

([n]q)2anzn−1

1 + ∑∞
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

[n]qanzn−1

∣∣∣∣∣∣∣∣∣ . (37)

If f ∈ Cq(α, β, γ), then in view of Definition 4 and Equation (37), we have∣∣∣∣∣∣∣∣∣
1 + ∑∞

n=2
Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

([n]q)2anzn−1

1 + ∑∞
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

[n]qanzn−1

∣∣∣∣∣∣∣∣∣ < |γ| (38)

Now, using the fact that <(z) < |z| in Inequality (38), we get

<


1 + ∑∞

n=2
Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

([n]q)2anzn−1

1 + ∑∞
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

[n]qanzn−1

 < |γ| (39)

Since χα
β,q f (z) is analytic in U, therefore taking limit z → 1− through real axis, Inequality (39)

gives the Assertion (36).

In the next section, we define (δ, q)-neighborhood of the function f ∈ A and establish the
inclusion relations of the subclasses Sq(α, β, γ) and Cq(α, β, γ) with the (δ, q)-neighborhood of the
identity function p(z) = z.

2. The Classes Nδ,q( f ) and Nδ,q(p)

In view of Equation (16), we define the (δ, q)-neighborhood of the function f ∈ A as:

Nδ,q( f ) =

{
g(z) = z +

∞

∑
n=2

bnzn
∣∣∣∣ ∞

∑
n=2

[n]q |an − bn| ≤ δ

}
(δ ≥ 0, 0 < q < 1), (40)
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where [n]q is given by Equation (2).
In particular, the (δ, q)-neighborhood of the identity function p(z) = z, defined as:

Nδ,q(p) =

{
g(z) = z +

∞

∑
n=2

bnzn
∣∣∣∣ ∞

∑
n=2

[n]q |bn| ≤ δ

}
(δ ≥ 0, 0 < q < 1). (41)

Since [n]q approaches n as q approaches 1−, therefore, from Equations (16) and (40),
we note that limq→1−Nδ,q( f ) = Nδ( f ), where Nδ( f ) is defined by Equation (16). In particular,
limq→1−Nδ,q(p) = Nδ(p).

Now, we establish the following inclusion relation between the class Sq(α, β, γ) and
(δ, q)-neighborhood Nδ,q(p) of identity function p for the specified range of values of δ:

Theorem 1. If −1 < β ≤ 0, |γ| ≤ [n]q − 1 (n = 2, 3, . . . ) and

δ ≥
|γ|[2]qΓq(α + β + 2)Γq(β + 1)

([2]q − |γ| − 1)Γq(β + 2)Γq(α + β + 1)
, (42)

then
Sq(α, β, γ) ⊂ Nδ,q(p) (γ ∈ C\ {0} ; α > 0; 0 < q < 1). (43)

Proof. Let f ∈ Sq(α, β, γ), then, in view of Lemma 1, Inequality (32) holds. Since for α > 0, −1 < β ≤

0, the sequence
{

Γq(β + n)
Γq(α + β + n)

}∞

n=2
is non-decreasing, therefore, we have

Γq(β + 2)Γq(α + β + 1)
Γq(α + β + 2)Γq(β + 1)

(
[2]q − |γ| − 1

) ∞

∑
n=2

an ≤
∞

∑
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

(
[n]q − |γ| − 1

)
an,

which in view of Inequality (32), gives

Γq(β + 2)Γq(α + β + 1)
Γq(α + β + 2)Γq(β + 1)

(
[2]q − |γ| − 1

) ∞

∑
n=2

an < |γ|, (44)

or, equivalently,
∞

∑
n=2

an <
|γ|Γq(α + β + 2)Γq(β + 1)

Γq(β + 2)Γq(α + β + 1)
(
[2]q − |γ| − 1

) . (45)

Again, using the fact that the sequence
{

Γq(β + n)
Γq(α + β + n)

}∞

n=2
is non-decreasing for α > 0 and

−1 < β ≤ 0, Inequality (32), gives

Γq(β + 2)Γq(α + β + 1)
Γq(α + β + 2)Γq(β + 1)

∞

∑
n=2

([n]q − |γ| − 1)an < |γ|,

or, equivalently,

Γq(β + 2)Γq(α + β + 1)
Γq(α + β + 2)Γq(β + 1)

∞

∑
n=2

[n]qan < |γ|+
(1 + |γ|)Γq(β + 2)Γq(α + β + 1)

Γq(α + β + 2)Γq(β + 1)

∞

∑
n=2

an, (46)

which on using the Inequality (45), gives

Γq(β + 2)Γq(α + β + 1)
Γq(α + β + 2)Γq(β + 1)

∞

∑
n=2

[n]qan < |γ|+ (1 + |γ|)|γ|
[2]q − |γ| − 1

,
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or, equivalently,
∞

∑
n=2

[n]q an <
|γ|[2]qΓq(α + β + 2)Γq(β + 1)

([2]q − |γ| − 1)Γq(β + 2)Γq(α + β + 1)
. (47)

Now, if we take δ ≥
|γ|[2]qΓq(α + β + 2)Γq(β + 1)

([2]q − |γ| − 1)Γq(β + 2)Γq(α + β + 1)
, then in view of Equation (41) and

Inequality (47), we obtain that f (z) ∈ Nδ,q(p), which proves the inclusion Relation (43).

Next, we establish the following inclusion relation between the class Cq(α, β, γ) and
(δ, q)-neighborhood Nδ,q(p) of identity function p for the specified range of values of δ:

Theorem 2. If −1 < β ≤ 0, |γ| ≥ 1 and

δ ≥
(|γ| − 1)Γq(α + β + 2)Γq(β + 1)(
[2]q − |γ|

)
Γq(β + 2)Γq(α + β + 1)

, (48)

then
Cq(α, β, γ) ⊂ Nδ,q(p) (α > 0; γ ∈ C\ {0} ; 0 < q < 1). (49)

Proof. Let f ∈ Cq(α, β, γ), then, in view of Lemma 2, Inequality (36) holds. Since for α > 0, −1 < β ≤

0, the sequence
{

Γq(β + n)
Γq(α + β + n)

}∞

n=2
is non-decreasing, therefore we have

Γq(β + 2)Γq(α + β + 1)
Γq(α + β + 2)Γq(β + 1)

(
[2]q − |γ|

) ∞

∑
n=2

[n]qan ≤
∞

∑
n=2

Γq(β + n)Γq(α + β + 1)
Γq(α + β + n)Γq(β + 1)

([n]q
(
[n]q − |γ|

)
)an,

which, in view of Inequality (36), gives

Γq(β + 2)Γq(α + β + 1)
Γq(α + β + 2)Γq(β + 1)

(
[2]q − |γ|

) ∞

∑
n=2

[n]qan < |γ| − 1, (50)

or, equivalently
∞

∑
n=2

[n]qan <
(|γ| − 1)Γq(α + β + 2)Γq(β + 1)(
[2]q − |γ|

)
Γq(β + 2)Γq(α + β + 1)

. (51)

Now, if we take δ ≥
(|γ| − 1)Γq(α + β + 2)Γq(β + 1)(
[2]q − |γ|

)
Γq(β + 2)Γq(α + β + 1)

, then in view of Equation (41) and

Inequality (51), we obtain that f (z) ∈ Nδ,q(p), which proves the inclusion Relation (49).

3. The Classes S(η)
q (α, β, γ) and C(η)

q (α, β, γ)

In this section, the classes S (η)q (α, β, γ) and C(η)q (α, β, γ) are defined. Then, we establish the
inclusion relations between the neighborhood of a function belonging to Sq(α, β, γ) and Cq(α, β, γ)

with S (η)q (α, β, γ) and C(η)q (α, β, γ), respectively. First, we define the class S (η)q (α, β, γ) as follows.

Definition 5. The function f ∈ A, belongs to S (η)q (α, β, γ) (α > 0; −1 < β; γ ∈ C\ {0} ; 0 < q < 1; 0 ≤
η < 1) if there exists a function g(z) ∈ Sq(α, β, γ) that satisfies∣∣∣∣ f (z)

g(z)
− 1
∣∣∣∣ < 1− η, (52)

where

g(z) = z +
∞

∑
n=2

bnzn. (53)
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Similarly, we define the class S (η)q (α, β, γ) as:

Definition 6. The function f ∈ A, belongs to C(η)q (α, β, γ) (α > 0; −1 < β; γ ∈ C\ {0} ; 0 < q < 1; 0 ≤
η < 1) if there exists a function g, given by Equation (53), in the class Cq(α, β, γ), satisfying the Inequality (52).

Now, we establish the following inclusion relation between a neighborhood Nδ,q(g) of any

function g ∈ Sq(α, β, γ) and the class S (η)q (α, β, γ) for the specified range of values of η:

Theorem 3. Let the function g, given by Equation (53), belongs to the class Sq(α, β, γ) and

η < 1−
δΓq(β + 2)Γq(α + β + 1)

(
[2]q − |γ| − 1

)
[2]q

((
[2]q − |γ| − 1

)
Γq(β + 2)Γq(α + β + 1)− |γ|Γq(α + β + 2)Γq(β + 1)

) , (54)

then
Nδ,q(g) ⊂ S (η)q (α, β, γ), (55)

where α > 0; −1 < β ≤ 0; γ ∈ C\ {0} ; δ ≥ 0; 0 < q < 1; 0 ≤ η < 1.

Proof. We assume that f ∈ Nδ,q(g), then in view of Relation (40), we have

∞

∑
n=2

[n]q |an − bn| ≤ δ. (56)

Since
{
[n]q

}∞
n=2 is non-decreasing sequence, therefore

∞

∑
n=2

[2]q |an − bn| ≤
∞

∑
n=2

[n]q |an − bn| ,

This implies that

[2]q
∞

∑
n=2
|an − bn| ≤

∞

∑
n=2

[n]q |an − bn| ,

which in view of Inequality (56) gives

[2]q
∞

∑
n=2
|an − bn| ≤ δ,

or, equivalently
∞

∑
n=2
|an − bn| ≤

δ

[2]q
(0 < q < 1; δ ≥ 0). (57)

Since −1 < β ≤ 0, therefore, for the function g, given by Equation (53), in the class Sq(α, β, γ),
using Inequality (45), we get

∞

∑
n=2

bn ≤
|γ|Γq(α + β + 2)Γq(β + 1)

Γq(β + 2)Γq(α + β + 1)
(
[2]q + |γ| − 1

) . (58)

Using Equations (10), (53) and the fact that |z| < 1, we get∣∣∣∣ f (z)
g(z)

− 1
∣∣∣∣ = ∣∣∣∣∑∞

n=2 (an − bn) zn−1

1 + ∑∞
n=2 bnzn−1

∣∣∣∣ ≤ ∑∞
n=2 |an − bn|

1−∑∞
n=2 |bn|

≤ ∑∞
n=2 |an − bn|
1−∑∞

n=2 bn
, (59)
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Now, using Inequalities (57) and (58) in Inequality (59), we get∣∣∣∣ f (z)
g(z)

− 1
∣∣∣∣ ≤ δΓq(β + 2)Γq(α + β + 1)

(
[2]q − |γ| − 1

)
[2]q

((
[2]q − |γ| − 1

)
Γq(β + 2)Γq(α + β + 1)− |γ|Γq(α + β + 2)Γq(β + 1)

) . (60)

If we take η < 1 −
δΓq(β + 2)Γq(α + β + 1)

(
[2]q − |γ| − 1

)
[2]q

((
[2]q − |γ| − 1

)
Γq(β + 2)Γq(α + β + 1)− |γ|Γq(α + β + 2)Γq(β + 1)

) ,

then in view of Definition 5 and Inequality (60), we obtain that f ∈ S (η)q (α, β, γ), which proves
the inclusion Relation (55).

Next, we establish the following inclusion relation between a neighborhood Nδ,q(g) of any

function g ∈ Cq(α, β, γ) and the class C(η)q (α, β, γ) for the specified range of values of η:

Theorem 4. Let the function g, given by Equation (53), belongs to the class Cq(α, β, γ) and

η < 1−
δ[2]q

(
[2]q − |γ|

)
Γq(β + 2)Γq(α + β + 1)

[2]q
(
[2]q

(
[2]q − |γ|

)
Γq(β + 2)Γq(α + β + 1)− (|γ| − 1)Γq(α + β + 2)Γq(β + 1)

) , (61)

then
Nδ,q(g) ⊂ C(η)q (α, β, γ), (62)

where |γ| > 1, α > 0; −1 < β ≤ 0; γ ∈ C\ {0} ; 0 < q < 1; δ ≥ 0; 0 ≤ η < 1.

Proof. If we take any f ∈ Nδ,q(g), then Inequality (57) holds.
Now, since −1 < β ≤ 0, therefore, for any function g, given by Equation (53), in the class

Cq(α, β, γ), using Inequality (51) and the fact that the sequence
{
[n]q

}∞
n=2 is non-decreasing, we get

∞

∑
n=2

bn <
(|γ| − 1)Γq(α + β + 2)Γq(β + 1)

[2]q
(
[2]q − |γ|

)
Γq(β + 2)Γq(α + β + 1)

. (63)

Using Inequalities (57) and (63) in Inequality (59), we get

∣∣∣∣ f (z)
g(z)

− 1
∣∣∣∣ ≤ δ[2]q

(
[2]q − |γ|

)
Γq(β + 2)Γq(α + β + 1)

[2]q
(
[2]q

(
[2]q − |γ|

)
Γq(β + 2)Γq(α + β + 1)− (|γ| − 1)Γq(α + β + 2)Γq(β + 1)

) . (64)

If we take η < 1−
δ[2]q

(
[2]q − |γ|

)
Γq(β + 2)Γq(α + β + 1)

[2]q
(
[2]q

(
[2]q − |γ|

)
Γq(β + 2)Γq(α + β + 1)− (|γ| − 1)Γq(α + β + 2)Γq(β + 1)

) ,

then in view of Definition 6 and Inequality (64), we obtain that f ∈ C(η)q (α, β, γ), which proves the
Assertion (61).

4. Application

First, we define the generalized hyper-Bessel function wc,b,αd
(z) as :

wc,b,αd
(z) =

∞

∑
n=0

(−c)n

n! ∏d
i=1 Γ

(
αi + n +

b + 1
2

) ( z
d + 1

)n(d+1)+∑d
i=1 αi

(65)

where ν, b, d, z ∈ C.
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Second, we define the function ϕαd ,b,c(z) : U→ C as:

ϕαd ,b,c(z) = (d + 1)∑d
i=1 αi

d

∏
i=1

Γ
(

αi +
b + 1

2

)
z

1−
∑d

i=1 αi

d + 1 wαd ,b,c(z1/d+1), (66)

by using Equation (65) in Equation (66), we get

ϕc,b,αd
(z) = ∑∞

n=0
(−c)n

n! ∏d
i=1

(
αi +

b + 1
2

)
n
(d + 1)n(d+1)

zn+1

= z + ∑∞
n=2

(−c)n−1

(n− 1)! ∏d
i=1

(
αi +

b + 1
2

)
n−1

(d + 1)(n−1)(d+1)
zn

(67)

by choosing d = 1 and α1 = ν, then the functions wc,b,αd
(z) and ϕαd ,b,c(z) are reduce to wν,b,d(z) and

φν,b,d(z), respectively.
Third, we applying the introduced function ϕc,b,αd

(z), given by Equation (67) in the results of
Lemma 1 and Lemma 2, we get the conditions for that function ϕc,b,αd

(z) to be in the classes Sq(α, β, γ)

and Cq(α, β, γ) in the following corollaries, respectively:

Corollary 1. If ϕc,b,αd
(z) is an analytic function such that it belongs to the class Sq(α, β, γ), then

∞

∑
n=2

(−c)n−1Γq(β + n)Γq(α + β + 1)

(n− 1)! ∏d
i=1

(
αi +

b + 1
2

)
n−1

(d + 1)(n−1)(d+1)Γq(α + β + n)Γq(β + 1)

×
(
[n]q − |γ| − 1

)
< |γ| (α > 0; β > −1; 0 < q < 1; γ ∈ C\ {0}),

where Γq and [n]q are given by Equations (2) and (3), respectively.

Corollary 2. If ϕc,b,αd
(z) is an analytic function such that it belongs to the class Cq(α, β, γ) and |γ| ≥ 1 then

∑∞
n=2

(−c)n−1Γq(β + n)Γq(α + β + 1)

(n− 1)! ∏d
i=1

(
αi +

b + 1
2

)
n−1

(d + 1)(n−1)(d+1)Γq(α + β + n)Γq(β + 1)

×([n]q
(
[n]q − |γ|

)
)an < |γ| − 1 (α > 0; β > −1; 0 < q < 1; γ ∈ C\ {0}),

where Γq and [n]q are given by Equations (2) and (3), respectively.

5. Discussion of Results and Future Work

The concept of q-derivatives has so far been applied in many areas of not only mathematics but
also physics, including fractional calculus and quantum physics. However, research on q-calculus is
in connection with function theory and especially geometric properties of analytic functions such as
starlikeness and convexity, which is fairly familiar on this topic. Finding sharp coefficient bounds for
analytic functions belonging to Classes of starlikeness and convexity defined by q-calculus operators is
of particular importance since any information can shed light on the study of the geometric properties
of such functions. Our results are applicable by using any analytic functions.

6. Conclusions

In this paper, we have used q-calculus to introduce a new q-integral operator which is a generalization
of the known Jung-Kim-Srivastava integral operator. Also, a new subclass involving the q-integral operator
introduced has been defined. Some interesting coefficient bounds for these subclasses of analytic functions
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have been studied. Furthermore, the (δ, q)-neighborhood of analytic functions and the inclusion relation
between the (δ, q)-neighborhood and the subclasses involving the q-integral operator have been derived.
The ideas of this paper may stimulate further research in this field.
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