Hilfer–Hadamard Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. Uniqueness Result
- There exists a constant such that for all and .
3.2. Existence Results
- There exists a continuous function such that
- There exists a real constant such that for all
- There exist and a continuous nondecreasing function such that
- There exists a constant such thatwhere Ω is defined by (11).
3.3. Examples
4. Multi-Valued Case
4.1. Existence Results for the Problem (19)
4.1.1. Case 1: Convex-Valued Multifunctions
- The multifunction is -Carathéodory;
- There exist a nondecreasing function and a continuous function such that
- There exists satisfying the following inequality:where Ω is given by (11).
4.1.2. Case 2: Nonconvex Valued Multifunctions
- is such that is measurable for each ;
- for almost all and with and for almost all .
4.2. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: NewYork, NY, USA, 1993. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
- Patnaik, S.; Sidhardh, S.; Semperlotti, F. Towards a unified approach to nonlocal elasticity via fractional-order mechanics. Int. J. Mech. Sci. 2021, 189, 105992. [Google Scholar] [CrossRef]
- Patnaik, S.; Sidhardh, S.; Semperlotti, F. Geometrically nonlinear analysis of nonlocal plates using fractional calculus. Int. J. Mech. Sci. 2020, 179, 105710. [Google Scholar] [CrossRef]
- Stempin, P.; Sumelka, W. Space-fractional Euler-Bernoulli beam model-Theory and identification for silver nanobeam bending. Int. J. Mech. Sci. 2020, 186, 105902. [Google Scholar] [CrossRef]
- Applications of Fractional Calculus in Physics; Hilfer, R. (Ed.) World Scientific: Singapore, 2000. [Google Scholar]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. J. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Frac. Calc. Appl. Anal. 2009, 12, 299–318. [Google Scholar]
- Furati, K.M.; Kassim, N.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 64, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Trujillo, J.J. Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y. Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 2015, 266, 850–859. [Google Scholar] [CrossRef]
- Sousa, J.V.d.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Asawasamrit, S.; Kijjathanakorn, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for Hilfer fractional differential equations. Bull. Korean Math. Soc. 2018, 55, 1639–1657. [Google Scholar]
- Wongcharoen, A.; Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Three-point boundary value problems for Langevin equation with Hilfer fractional derivative. Adv. Math. Phys. 2020, 2020, 9606428. [Google Scholar] [CrossRef]
- Ntouyas, S.K. A survey on existence results for boundary value problems of Hilfer fractional differential equations and inclusions. Foundations 2021, 1, 63–98. [Google Scholar] [CrossRef]
- Hadamard, J. Essai sur l’etude des fonctions donnees par leur developpment de Taylor. J. Mat. Pure Appl. Ser. 1892, 8, 101–186. [Google Scholar]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002, 270, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Qassim, M.D.; Furati, K.M.; Tatar, N.-E. On a differential equation involving Hilfer-Hadamard fractional derivative. Abstr. Appl. Anal. 2012, 2012, 391062. [Google Scholar] [CrossRef]
- Vivek, D.; Shahb, K.; Kanagarajan, K. Dynamical analysis of Hilfer-Hadamard type fractional pantograph equations via successive approximation. J. Taibah Univ. Sci. 2019, 13, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Bachira, F.S.; Abbas, S.; Benbachir, M.; Benchohra, M. Hilfer-Hadamard fractional differential equations; Existence and Attractivity, Adv. Theory Nonl. Anal. Appl. 2021, 5, 49–57. [Google Scholar]
- Promsakon, C.; Ntouyas, S.K.; Tariboon, J. Hilfer-Hardamard nonlocal integro-multi-point fractional boundary value problems. J. Funct. Spaces, submitted for publication.
- Saengthong, W.; Thailert, E.; Ntouyas, S.K. Existence and uniqueness of solutions for system of Hilfer-Hadamard sequential fractional differential equations with two point boundary conditions. Adv. Differ. Equ. 2019, 2019, 525. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Ren, X.; Zhang, L.; Ahmad, B. Explicit iteration and unique positive solution for a Caputo-Hadamard fractional turbulent flow model. IEEE Access 2019, 7, 109833–109839. [Google Scholar] [CrossRef]
- Graef, J.R.; Grace, S.R.; Tunc, E. Asymptotic behavior of solutions of nonlinear fractional equations with Caputo-type Hadamard derivatives. Fract. Calc. Appl. Anal. 2017, 20, 71–87. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Hamidi, N.; Henderson, J. Caputo-Hadamard fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 2018, 21, 1027–1045. [Google Scholar] [CrossRef]
- Ma, L. Comparison theorems for Caputo-Hadamard fractional differential equations. Fractals 2019, 27, 1950036. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Wang, Z. Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. J. Sci. Comput. 2020, 85, 41. [Google Scholar] [CrossRef]
- Ntouyas, S.K. Nonlocal Initial and Boundary Value Problems: A survey. In Handbook on Differential Equations: Ordinary Differential Equations; Canada, A., Drabek, P., Fonda, A., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2005; pp. 459–555. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Krasnoselskiĭ, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
- Smart, D.R. Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1974. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Lasota, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 1965, 13, 781–786. [Google Scholar]
- Deimling, K. Multivalued Differential Equations; De Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Covitz, H.; Nadler, S.B., Jr. Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 1970, 8, 5–11. [Google Scholar] [CrossRef]
- Kisielewicz, M. Differential Inclusions and Optimal Control; Kluwer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Castaing, C.; Valadier, M. Convex Analysis and Measurable Multifunctions; Lecture Notes in Mathematics 580; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1977. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, B.; Ntouyas, S.K. Hilfer–Hadamard Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions. Fractal Fract. 2021, 5, 195. https://doi.org/10.3390/fractalfract5040195
Ahmad B, Ntouyas SK. Hilfer–Hadamard Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions. Fractal and Fractional. 2021; 5(4):195. https://doi.org/10.3390/fractalfract5040195
Chicago/Turabian StyleAhmad, Bashir, and Sotiris K. Ntouyas. 2021. "Hilfer–Hadamard Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions" Fractal and Fractional 5, no. 4: 195. https://doi.org/10.3390/fractalfract5040195
APA StyleAhmad, B., & Ntouyas, S. K. (2021). Hilfer–Hadamard Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions. Fractal and Fractional, 5(4), 195. https://doi.org/10.3390/fractalfract5040195