Certain Recurrence Relations of Two Parametric Mittag-Leffler Function and Their Application in Fractional Calculus
Abstract
:1. Introduction and Preliminaries
- (i)
- If , then the series (8) is absolutely convergent for all ;
- (ii)
- If , the series (8) is absolutely convergent for ;
- (iii)
- If and , the series (8) is absolutely convergent for .
1.1. Two Parametric Mittag-Leffler Function
1.2. Three Parametric Mittag-Leffler Function and Its Various Extensions
2. Recurrence Relations
3. Certain Relations among the Fox–Wright Functions
4. Concluding Remarks and Posing Problems
- (i)
- (ii)
- Demonstrate some particular cases of the identities given in (i);
- (iii)
- (iv)
- Consider certain particular cases of identities that will be derived in (iii).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mittag-Leffler, M.G. Sur l’intégrale de Laplace-Abel. C. R. Acad. Sci. Paris (Ser. II) 1902, 136, 937–939. [Google Scholar]
- Mittag-Leffler, M.G. Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. Paris (Ser. II) 1903, 137, 554–558. [Google Scholar]
- Mittag-Leffler, M.G. Sopra la funzione Eα(x). Rend. Accad. Lincei 1904, 13, 3–5. [Google Scholar]
- Buhl, A. Séries Analytiques, Sommabilité, Number 7 in Mémorial des Sciences Mathématiques; Gauthier-Villars: Paris, France, 1925. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: Berlin, Germany, 2020. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series 55, Ninth Printing; National Bureau of Standards: Washington, DC, USA, 1972; Reprint of the 1972 Edition, Dover Publications, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Djrbashian, M.M. Harmonic Analysis and Boundary Value Problems in the Complex Domain; Birkhauser Verlay: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 1996. [Google Scholar]
- Djrbashian, M.M. Integral Transforms and Representations of Functions in the Complex Domain; Nauka: Moscow, Russia, 1966. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1955; Volume 3. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Rogosin, S. Mittag-Leffler Type Functions: Notes on Growth Properties and Distribution of Zeros; Preprint No. A04-97; Serie A Mathematik; Freie Universität Berlin: Berlin, Germany, 1997. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Oscillations and Mittag-Leffler Type Functions; Preprint No. A14-96; Freie Universität Berlin, Serie A Mathematik: Berlin, Germany, 1996. [Google Scholar]
- Gorenflo, R.; Mainardi, F. The Mittag-Leffler type functions in the Riemann-Liouville fractional calculus. In Boundary Value Problems, Special Functions and Fractional Calculus; Kilbas, A.A., Ed.; Proceedings of International Conference (Minsk, 1996); Belarusian State University: Minsk, Belarus, 1996; pp. 215–225. [Google Scholar]
- Mittag-Leffler, G. Sur la représentation analytique d’une branche uniforme d’une fonction monogène (cinquième note). Acta Math. 1905, 29, 101–181. [Google Scholar] [CrossRef]
- Wiman, A. Über den fundamentalsatz in der theorie der funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Wiman, A. Über die nullsteliun der funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Mainardi, F. Why the Mittag-Leffler Function can be considered the queen function of the fractional calculus? Entropy 2020, 22, 1359. [Google Scholar] [CrossRef]
- Mathai, A.M.; Saxena, R.K. The H-Function with Applications in Statistics and Other Disciplines; Halsted Press (John Wiley & Sons): New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, Canada, 1978. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theory and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Bagley, R.L. On the fractional order initial value problem and its engineering applications. In Fractional Calculus and Its Applications; Proceedings of International Conference (Tokyo, 1989); College of Engineering, Nihon University: Tokyo, Japan, 1990; pp. 12–20. [Google Scholar]
- Beyer, Y.; Kempfle, S. Definition of physically consistent damping laws with fractional derivatives. Z. Angew. Math. Mech. 1995, 75, 623–635. [Google Scholar] [CrossRef]
- Caputo, M.; Mainardi, F. Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento 1971, 1, 161–198. [Google Scholar] [CrossRef]
- Goldsmith, P.L. The calculation of true practicle size distributions from the sizes observed in a thin slice. Br. J. Appl. Phys. 1967, 18, 813–830. [Google Scholar] [CrossRef]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef] [Green Version]
- Nonnenmacher, T.F.; Glockle, W.G. A fractional model for mechanical stress relaxation. Philos. Mag. Lett. 1991, 64, 89–93. [Google Scholar] [CrossRef]
- Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144. [Google Scholar] [CrossRef]
- Humbert, P.; Agrawal, R.P. Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations. Bull. Sci. Math. 1953, 77, 180–185. [Google Scholar]
- Hille, E.; Tamarkin, J.D. On the theory of linear integral equations. Ann. Math. 1930, 31, 479–528. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M. On solution of integral equations of Abel-Volterra type. Differ. Integral Equ. 1995, 8, 993–1011. [Google Scholar]
- Kilbas, A.A.; Saigo, M. On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations. Integral Transform. Spec. Funct. 1996, 4, 355–370. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M. Fractional integrals and derivatives of Mittag-Leffler type function (Russian). Doklady Akad. Nauk Belarusi 1995, 39, 22–26. [Google Scholar]
- Kilbas, A.A.; Saigo, M. Solution of Abel type integral equations of second kind and differential equations of fractional order (Russian). Doklady Akad. Nauk Belarusi 1995, 39, 29–34. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Yverdon, Switzerland; Amsterdam, The Netherlands; Reading, UK; Tokyo, Japan; Paris, France; Berlin, Germany; Langhorne, PA, USA; Victoria, Australia, 1993. [Google Scholar]
- Choi, J.; Parmar, R.K.; Chopra, P. Extended Mittag-Leffler function and associated fractional calculus operators. Georgian Math. J. 2019, 27, 11. [Google Scholar] [CrossRef]
- Mainardi, F.; Gorenflo, R. Time-fractional derivatives in relaxation processes: A tutorial survey. Fract. Calc. Appl. Anal. 2007, 10, 269–308. [Google Scholar]
- Agarwal, R.P. A propos d’une note de M. Pierre Humbert. CR Acad. Sci. Paris 1953, 236, 2031–2032. [Google Scholar]
- Fry, C.G.; Hughes, H.K. Asymptotic developments of certain integral functions. Duke Math. J. 1942, 9, 791–802. [Google Scholar] [CrossRef]
- Humbert, P. Quelques resultatsrelatifs a la fonction de Mittag-Leffler. CR Acad. Sci. Paris 1953, 236, 1467–1468. [Google Scholar]
- Schneider, W.R. Completely monotone generalized Mittag-Leffler functions. Expo. Math. 1996, 14, 3–24. [Google Scholar]
- Sedletskii, A.M. Asymptotic formulas for zero of a function of Mittag-Leffler type (Russian). Anal. Math. 1994, 20, 117–132. [Google Scholar]
- Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A practical guide to Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 2020, 23, 9–54. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. Proc. Lond. Math. Soc. 1940, 46, 389–408. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. R. Soc. Lond. A 1940, 238, 423–451. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series (second paper). Philos. Trans. R. Soc. Lond. A 1941, 239, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Fox, C. The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. 1928, 27, 389–400. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies, Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Srivastava, H.M.; Tomovski, Ž. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Gupta, I.S.; Debnath, L. Some properties of the Mittag-Leffler functions. Integral Transform. Spec. Funct. 2007, 18, 329–336. [Google Scholar] [CrossRef]
- Saxena, R.K. Certain properties of generalized Mittag-Leffler function. In Proceedings of the 3rd Annual Conference of the Society for Special Functions and Their Applications, Chennai, India, 22 June–3 July 2002; pp. 77–81. [Google Scholar]
- Hilfer, R.; Seybold, H.J. Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integral Transform. Spec. Funct. 2006, 17, 637–652. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA; Boston, MA, USA; New York, NY, USA; London, UK; Sydney, Australia; Tokyo, Japan; Toronto, ON, Canada, 1999. [Google Scholar]
- Seybold, H.; Hilfer, R. Numerical Algorithm for calculating the generalized Mittag-Leffler function. SIAM J. Numer. Anal. 2008, 47, 69–88. [Google Scholar] [CrossRef]
- Berberan-Santos, M.N. Properties of the Mittag-Leffler relaxation function. J. Math. Chem. 2005, 38, 629–635. [Google Scholar] [CrossRef]
- Garra, R.; Garrappa, R. The Prabhakar or three parameter Mittag-Leffler function: Theory and application. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.K.; Prajapati, J.C. On a recurrence relation of generalized Mittag-Leffler function. Surv. Math. Appl. 2009, 4, 133–138. [Google Scholar]
- Shukla, A.K.; Prajapati, J.C. On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef] [Green Version]
- Salim, T.O. Some properties relating to the generalized Mittag-Leffler function. Adv. Appl. Math. Anal. 2009, 4, 21–30. [Google Scholar]
- Kurulay, M.; Bayram, M. Some properties of the Mittag-Leffler functions and their relation with the Wright functions. Adv. Diff. Equ. 2012, 2012, 181. [Google Scholar] [CrossRef] [Green Version]
- Dhakar, V.S.; Sharma, K. On a recurrence relation of K-Mittag-Leffler function. Commun. Korean Math. Soc. 2013, 28, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Dorrego, G.A.; Cerutti, R.A. The k-Mittag-Leffler function. Int. J. Contemp. Math. Sci. 2012, 7, 705–716. [Google Scholar]
- Díaz, R.; Pariguan, E. On hypergeometric functions and k-Pochhammer symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Sharma, S.; Jain, R. On some recurrence relations of generalized q-Mittag Leffler function. Math. Aeterna 2016, 6, 791–795. [Google Scholar]
- Gehlot, K.S. Recurrence relation and integral representation of p-k Mittag-Leffler function. Palest. J. Math. 2021, 10, 290–298. [Google Scholar]
- Gehlot, K.S. The p-k Mittag-Leffler function. Palest. J. Math. 2018, 7, 628–632. [Google Scholar]
- Choi, J. Certain applications of generalized Kummer’s summation formulas for 2F1. Symmetry 2021, 13, 1538. [Google Scholar] [CrossRef]
- Choi, J.; Qureshi, M.I.; Bhat, A.H.; Majid, J. Reduction formulas for generalized hypergeometric series associated with new sequences and applications. Fractal Fract. 2021, 5, 150. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachan, D.S.; Jaloree, S.; Choi, J. Certain Recurrence Relations of Two Parametric Mittag-Leffler Function and Their Application in Fractional Calculus. Fractal Fract. 2021, 5, 215. https://doi.org/10.3390/fractalfract5040215
Sachan DS, Jaloree S, Choi J. Certain Recurrence Relations of Two Parametric Mittag-Leffler Function and Their Application in Fractional Calculus. Fractal and Fractional. 2021; 5(4):215. https://doi.org/10.3390/fractalfract5040215
Chicago/Turabian StyleSachan, Dheerandra Shanker, Shailesh Jaloree, and Junesang Choi. 2021. "Certain Recurrence Relations of Two Parametric Mittag-Leffler Function and Their Application in Fractional Calculus" Fractal and Fractional 5, no. 4: 215. https://doi.org/10.3390/fractalfract5040215
APA StyleSachan, D. S., Jaloree, S., & Choi, J. (2021). Certain Recurrence Relations of Two Parametric Mittag-Leffler Function and Their Application in Fractional Calculus. Fractal and Fractional, 5(4), 215. https://doi.org/10.3390/fractalfract5040215