An Approximate Solution of the Time-Fractional Two-Mode Coupled Burgers Equation
Abstract
:1. Introduction
2. Definitions and Mathematical Preliminaries
3. Existence and Uniqueness
3.1. Existence of the Solution
3.2. Uniqueness
4. Solution of Two Mode Coupled Burgers Equations
5. Convergence Analysis
6. An Illustrative Example
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bateman, H. Some recent researches on the motion of fluids. Mon. Weather Rev. 1915, 43, 163–170. [Google Scholar] [CrossRef]
- Burgers, J.M. A Mathematical Model Illustrating the Theory of Turbulence. In Advances in Applied Mechanics; Elsevier: Amsterdam, The Netherlands, 1948; Volume 1, pp. 171–199. [Google Scholar] [CrossRef]
- Momani, S. Non-perturbative analytical solutions of the space-and time-fractional Burgers equations. Chaos Solitons Fractals 2006, 28, 930–937. [Google Scholar] [CrossRef]
- Rawashdeh, M.S. A reliable method for the space-time fractional Burgers and time-fractional Cahn-Allen equations via the FRDTM. Adv. Differ. Equ. 2017, 2017, 99. [Google Scholar] [CrossRef]
- Saad, K.M.; Al-Sharif, E.H.F. Analytical study for time and time-space fractional Burgers’ equation. Adv. Differ. Equa. 2017, 2017, 300. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, N. Burgers equation with a fractional derivative, hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 1991, 225, 631–653. [Google Scholar] [CrossRef]
- Korsunsky, S.V. Soliton solutions for a second-order KdV equation. Phys. Lett. 1994, 185, 174–176. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A two-mode Burgers equation of weak shock waves in a fluid: Multiple kink solutions and other exact solutions. Int. J. Appl. Comput. Math. 2016, 3, 3977–3985. [Google Scholar] [CrossRef]
- Jaradat, H.M. Two-mode coupled Burgers equation:Multiple-kink solutions and other exact solutions. Alex. Eng. J. 2017, 57, 2151–2155. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Yavuz, M.; Bulut, H.; Baskonus, H.M. Investigation of the fractional coupled viscous Burgers’ equation involving Mittag-Leffler kernel. Phys. Stat. Mech. Appl. 2019, 527, 121126. [Google Scholar] [CrossRef]
- Esipov, S.E. Coupled Burgers equations: A model of polydispersive sedimentation. Phys. Rev. 1995, 52, 3711–3718. [Google Scholar] [CrossRef] [Green Version]
- Alkahtani, B.S.T.; Alkahtani, J.O.; Dubey, R.S.; Goswami, P. The solution of modified fractional Bergman’s minimal blood glucose-insulin model. Entropy 2017, 19, 114. [Google Scholar] [CrossRef] [Green Version]
- Chaurasia, V.B.L.; Dubey, R.S. Analytical solution for the differential equation containing generalized fractional derivative operators and Mittag-Leffler-type function. Int. Sch. Res. Not. Isrn Appl. Math. 2011, 2011, 682381. [Google Scholar] [CrossRef] [Green Version]
- Dubey, R.S.; Goswami, P. Analytical Solution of the Nonlinear Diffusion Equation. Eur. Phys. J. Plus 2018, 133, 183. [Google Scholar] [CrossRef]
- Shrahili, M.; Dubey, R.S.; Shafay, A. Inclusion of Fading Memory to Banister Model of Changes In Physical Condition Discret. Contin. Dyn. Syst. Ser. 2020, 13, 881–888. [Google Scholar]
- Chen, Y.; An, H.-L. Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives. Appl. Math. Comput. 2008, 200, 87–95. [Google Scholar] [CrossRef]
- Elbeleze, A.A.; Kilicman, A.; Taib, B.M. Note on the Convergence Analysis of Homotopy Perturbation Method for Fractional Partial Differential Equations. Abstr. Appl. Anal. 2014, 2014, 803902. [Google Scholar] [CrossRef]
- Hammouch, Z.; Yavuz, M.; Özdemir, N. Numerical solutions and synchronization of a variable-order fractional chaotic system. Math. Model. Numer. Simul. Appl. (MMNSA) 2021, 1, 11–23. [Google Scholar]
- JHe, H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar]
- Rashid, S.; Khalid, A.; Sultana, S.; Hammouch, Z.; Shah, R.; Alsharif, A.M. A novel analytical view of time-fractional Korteweg-De Vries equations via a new integral transform. Symmetry 2021, 13, 1254. [Google Scholar] [CrossRef]
- Sripacharasakullert, P.; Sawangtong, W.; Sawangtong, P. An Approximate Analytical Solution of the Fractional Multi-Dimensional Burgers Equation by the Homotopy Perturbation Method. Adv. Differ. Equations 2019, 2019, 252. [Google Scholar] [CrossRef]
- Jafari, H. Numerical Solution of Time-Fractional Klein–Gordon Equation by Using the Decomposition Methods. Asme-J. Comput. Nonlinear Dyn. 2016, 11, 041015. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introdution to the Fractional Calculus and Fractional Differential Equations; J. Willey & Sons: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier North-Holland Science Publishers: London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- He, J.H. Perturbation Methods: Basic and Beyond; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- He, J.H. Application of Homotopy Perturbation Method to Nonlinear Wave Equations. Chaos Solitons Fractals 2005, 26, 695–700. [Google Scholar] [CrossRef]
- He, J.H.; El-Dib, Y.O. The enhanced homotopy perturbation method for axial vibration of strings. Facta Univ. Mech. Eng. 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokhanda, R.; Goswami, P.; He, J.-H.; Althobaiti, A. An Approximate Solution of the Time-Fractional Two-Mode Coupled Burgers Equation. Fractal Fract. 2021, 5, 196. https://doi.org/10.3390/fractalfract5040196
Shokhanda R, Goswami P, He J-H, Althobaiti A. An Approximate Solution of the Time-Fractional Two-Mode Coupled Burgers Equation. Fractal and Fractional. 2021; 5(4):196. https://doi.org/10.3390/fractalfract5040196
Chicago/Turabian StyleShokhanda, Rachana, Pranay Goswami, Ji-Huan He, and Ali Althobaiti. 2021. "An Approximate Solution of the Time-Fractional Two-Mode Coupled Burgers Equation" Fractal and Fractional 5, no. 4: 196. https://doi.org/10.3390/fractalfract5040196
APA StyleShokhanda, R., Goswami, P., He, J. -H., & Althobaiti, A. (2021). An Approximate Solution of the Time-Fractional Two-Mode Coupled Burgers Equation. Fractal and Fractional, 5(4), 196. https://doi.org/10.3390/fractalfract5040196