Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications
Abstract
:1. Introduction and Preliminaries
- (i)
- diverges for all , if ;
- (ii)
- converges for all , if ;
- (iii)
- converges for and diverges for if ;
- (iv)
- converges absolutely for , if and ;
- (v)
- converges conditionally for , if and ;
- (vi)
- diverges for , if and .
- (i)
- (ii)
- The idea of partition of the set of nonnegative integers into its terms modulo N applied to a series involving functions displayed by
- (iii)
- The method in (ii) is to obtain summation formulas for certain generalized hypergeometric functions of higher order from those of lower order. Conversely, reduction formulas of generalized hypergeometric and their extended special functions are to reduce those of higher order to some other ones of lower order (see, e.g., [14,38,39,40,41,42,43,44,45]).
2. Sequences of New Numbers
- (i)
- is a polynomial in both α and k of the same degree ℓ.
- (ii)
- is a polynomial in α of degree .
- (iii)
- is a polynomial in α of degree .
- (iv)
3. Reduction Theorems in Terms of the Sequence in Definition 1
4. Generalized Summation Theorems 5 mm Based on (16), (18) and (20)
4.1. Generalized Summation Formulas Based on (16)
4.2. Generalized Summation Formulas Based on (18)
4.3. Generalized Summation Formulas Based on (20)
5. Generalized Summation Theorems 5 mm Based on (15), (17) and (19)
5.1. Generalized Summation Formulas Based on (15)
5.2. Generalized Summation Formulas Based on (17)
5.3. Generalized Summation Formulas Based on (19)
6. Formulas Involving Finite Sums of
7. Particular Cases
8. Concluding Remarks and Posing Problems
- (i)
- (ii)
- Try to give more general formulas than those in Theorems 5, 8 and 11 as in the shape of the left-handed member of (10).
- (iii)
- Try to establish generalized summation formulas for based on certain known ones in the literature, by using the similar technique in this paper, with a particular aid of the sequences of newly introduced numbers in Section 2.
- (iv)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Encyclopedia of Mathematics and its Applications 71; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: London, UK, 1935. [Google Scholar]
- Carlson, B.C. Special Functions of Applied Mathematics; Academic Press: New York, NY, USA; San Francisco, CA, USA; London, UK, 1977. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan Company: New York, 1960; Reprinted by Chelsea Publishing Company, Bronx: New York, NY, USA, 1971. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge at the University Press: London, UK; New York, NY, USA, 1966. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series, More Special Functions; Nauka: Moscow, Russia, 1986, (In Russian). Gould, G.G., Translator; Gordon and Breach Science Publishers: New York, NY, USA; Philadelphia, PA, USA; London, UK; Paris, France; Montreux, Switzerland; Tokyo, Japan; Melbourne, Australia, 1990; Volume 3. [Google Scholar]
- Gauss, C.F. Disquisitiones Generales Circa Seriem Infinitam . Comment. Soc. Regiae Sci. Gottingensis Recent. 1813, 2, 1–46. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, 4th ed.; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1963. [Google Scholar]
- Choi, J. Contiguous extensions of Dixon’s theorem on the sum of a 3F2. J. Inequ. App. 2010, 2010, 589618. [Google Scholar] [CrossRef] [Green Version]
- Ebisu, A. On a strange evaluation of the hypergeometric series by Gosper. Ramanujan J. 2013, 32, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Joshi, C.M.; McDonald, J.B. Some finite summation theorems and an asymptotic expansion for the generalized hypergeometric series. J. Math. Anal. Appl. 1972, 40, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Rakha, M.A.; Rathie, A.K. Extensions of certain classical summation theorems for the series 2F1, 3F2, and 4F3 with applications in Ramanujan’s summations. Int. J. Math. Math. Sci. 2010, 2010, 309503. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Rathie, A.K. Applications of Generalized Kummer’s summation theorem for the series 2F1. Bull. Korean Math. Soc. 2009, 46, 1201–1211. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Rathie, A.K. Applications of generalized Gauss’s second summationtheorem for the series 2F1. Math. Commun. 2011, 16, 481–489. [Google Scholar]
- Kim, Y.S.; Rathie, A.K. A new proof of Saalschütz’s theorem for the series 3F2(1) and its contiguous results with applications. Commun. Korean Math. Soc. 2012, 27, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Rathie, A.K.; Paris, R.B. An extension of Saalschütz’s summation theorem for the series r+3Fr+2. Integral Transforms Spec. Funct. 2013, 24, 916–921. [Google Scholar] [CrossRef]
- Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities; Friedr. Vieweg & Sohn Verlagsgesellschaft mbH: Braunschweig/Wiesbaden, Germany, 1998. [Google Scholar]
- Krattenthaler, C.; Rao, K.S. Automatic generation of hypergeometric identities by the beta integral method. J. Comput. Appl. Math. 2003, 160, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K. Generalizations of Watson’s theorem on the sum of a 3F2. Indian J. Math. 1992, 34, 23–32. [Google Scholar]
- Lavoie, J.L.; Grondin, F.; Arora, A.K.R.K. Generalizations of Dixon’s theorem on the sum of a 3F2. Math. Comp. 1994, 62, 267–276. [Google Scholar] [CrossRef]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K. Generalizations of Whipple’s theorem on the sum of a 3F2. J. Comput. Appl. Math. 1996, 72, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Zeilberger, D. A fast algorithm for proving terminating hypergeometric identities. Discrete Math. 1990, 80, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Quine, J.R. E.W. Barnes’ approach of the multiple Gamma functions. J. Korean Math. Soc. 1992, 29, 127–140. [Google Scholar]
- Choi, J.; Srivastava, H.M. A note on a multiplication formula for the multiple Gamma function Γn. Ital. J. Pure Appl. Math. 2008, 23, 179–188. [Google Scholar]
- Carlson, B.C. Some extensions of Lardner’s relations between 0F3 and Bessel functions. SIAM J. Math. Anal. 1970, 1, 232–242. [Google Scholar] [CrossRef]
- Choi, J.; Rathie, A.K. Generalizations of two summation formulas for the generalized hypergeometric function of higher order due to Exton. Commun. Korean Math. Soc. 2010, 25, 385–389. [Google Scholar] [CrossRef] [Green Version]
- Exton, H. Some new summation formulae for the generalized hypergeometric function of higher order. J. Comput. Appl. Math. 1997, 79, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Henrici, P. A triple product theorem for hypergeometric series. SIAM J. Math. Anal. 1987, 18, 1513–1518. [Google Scholar] [CrossRef]
- Karlsson, P.W.; Srivastava, H.M. A note on Henrici’s triple product theorem. Proc. Am. Math. Soc. 1990, 110, 85–88. [Google Scholar] [CrossRef]
- Lardner, T.J. Relations between 0F3 and Bessel functions. SIAM Rev. 1969, 11, 69–72. [Google Scholar] [CrossRef]
- Osler, T.J. An identity for simplifying certain generalized hypergeometric functions. Math. Comp. 1975, 29, 888–893. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. A note on certain identities involving generalized hypergeometric series. Indag. Math. 1979, 82, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. A certain family of sub-exponential series. Int. J. Math. Ed. Sci. Tech. 1994, 25, 211–216. [Google Scholar] [CrossRef]
- Tremblay, R.; Fugère, B.J. Products of two restricted hypergeometric functions. J. Math. Anal. Appl. 1996, 198, 844–852. [Google Scholar] [CrossRef] [Green Version]
- Gottschalk, J.E.; Maslen, E.N. Reduction formulae for the generalized hypergeometric functions of one variable. J. Phys. A Math. Gen. 1988, 21, 1983–1998. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, P.W. Hypergeometric functions with integral parameter differences. J. Math. Phys. 1971, 12, 270–271. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, P.W. Reduction of hypergoemetric functions with integral parameter differences. Indag. Math. 1974, 77, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, P.W. Some reduction formulae for double power series and Kampé de Fériet functions. Indaga. Math. 1984, 87, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.R. A summation formula for Clausen’s series 3F2(1) with an application to Goursat’s function 2F2(x). J. Phys. A Math. Gen. 2005, 38, 3541–3545. [Google Scholar] [CrossRef]
- Minton, B.M. Generalized hypergeometric function of unit argument. J. Math. Phys. 1970, 11, 1375–1376. [Google Scholar] [CrossRef]
- Panda, R. A note on certain reducible cases of the generalized hypergeometric function. Indag. Math. 1976, 79, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Generalized hypergeometric functions with integral parameter differences. Nederl. Akad. Wetensch. Indag. Math. 1973, 76, 38–40. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.R.; Paris, R.B. Certain transformations and summations for generalized hypergeometric series with integral parameter differences. Integral Transforms Spec. Funct. 2011, 22, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.R.; Srivastava, H.M. Karlsson-Minton summation theorems for the generalized hypergeometric series of unit argument. Integral Transforms Spec. Funct. 2010, 21, 603–612. [Google Scholar] [CrossRef]
- Kummer, E.E. Über die hypergeometrische Reihe . J. Reine Angew. Math. 1836, 15, 127–172. [Google Scholar]
- Choi, J.; Rathie, A.K.; Srivastava, H.M. A Generalization of a formula due to Kummer. Integral Transforms Spec. Funct. 2011, 22, 851–859. [Google Scholar] [CrossRef]
- Choi, J. Certain applications of generalized Kummer’s summation formulas for 2F1. Symmetry 2021, 13, 1538. [Google Scholar] [CrossRef]
- Choi, J.; Rathie, A.K.; Malani, S. Kummer’s theorem and its contiguous identities. Taiwan. J. Math. 2007, 11, 1521–1527. [Google Scholar] [CrossRef]
- Qureshi, M.I.; Baboo, M.S. Some unified and generalized Kummer’s first summation theorems with applications in Laplace transform technique. Asia Pac. J. Math. 2016, 3, 10–23. [Google Scholar]
- Rakha, M.A.; Rathie, A.K. Generalizations of classical summation theorems for the series 2F1 and 3F2 with applications. Integral Transforms Spec. Func. 2011, 22, 823–840. [Google Scholar] [CrossRef]
- Vidunas, R. A generalization of Kummer’s identity. Rocky Mt. J. Math. 2002, 32, 919–936. [Google Scholar] [CrossRef]
- Mittag–Leffler, G.M. Sur la nouvelle fonction Eα(x). Comptes R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Wiman, A. Über den fundamentalsatz in der theorie der funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Wiman, A. Über die nullsteliun der funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Djrbashian, M.M. Harmonic Analysis and Boundary Value Problems in the Complex Domain; Birkhauser Verlay: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 1996. [Google Scholar]
- Djrbashian, M.M. Integral Transforms and Representations of Functions in the Complex Domain; Nauka: Moscow, Russia, 1966. (In Russian) [Google Scholar]
- Fox, C. The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. 1928, 27, 389–400. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 286–293. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. R. Soc. Lond. A 1940, 238, 423–451. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function II. Proc. Lond. Math. Soc. 1940, 46, 389–408. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Mainardi, F.; Gorenflo, R. Time-fractional derivatives in relaxation processes: A tutorial survey. Fract. Calc. Appl. Anal. 2007, 10, 269–308. [Google Scholar]
- Abdalla, M.; Akel, M.; Choi, J. Certain matrix Riemann–Liouville fractional integrals associated with functions involving generalized Bessel matrix polynomials. Symmetry 2021, 13, 622. [Google Scholar] [CrossRef]
- Khan, N.U.; Aman, M.; Usman, T.; Choi, J. Legendre-Gould Hopper-based Sheffer polynomials and operational methods. Symmetry 2020, 12, 2051. [Google Scholar] [CrossRef]
- Khan, N.U.; Usman, T.; Choi, J. A new class of generalized polynomials involving Laguerre and Euler polynomials. Hacet. J. Math. Stat. 2021, 50, 1–13. [Google Scholar] [CrossRef]
- Nahid, T.; Alam, P.; Choi, J. Truncated-exponential-based Appell-type Changhee polynomials. Symmetry 2020, 12, 1588. [Google Scholar] [CrossRef]
- Usman, T.; Saif, M.; Choi, J. Certain identities associated with (p, q)-binomial coefficients and (p, q)-Stirling polynomials of the second kind. Symmetry 2020, 12, 1436. [Google Scholar] [CrossRef]
- Yasmin, G.; Islahi, H.; Choi, J. q-generalized tangent based hybrid polynomials. Symmetry 2021, 13, 791. [Google Scholar] [CrossRef]
- Choi, J. Notes on formal manipulations of double series. Commun. Korean Math. Soc. 2003, 18, 781–789. [Google Scholar] [CrossRef]
- Alzer, H.; Choi, J. Four parametric linear Euler sums. J. Math. Anal. Appl. 2020, 484, 123661. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Qureshi, M.I.; Bhat, A.H.; Majid, J. Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications. Fractal Fract. 2021, 5, 150. https://doi.org/10.3390/fractalfract5040150
Choi J, Qureshi MI, Bhat AH, Majid J. Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications. Fractal and Fractional. 2021; 5(4):150. https://doi.org/10.3390/fractalfract5040150
Chicago/Turabian StyleChoi, Junesang, Mohd Idris Qureshi, Aarif Hussain Bhat, and Javid Majid. 2021. "Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications" Fractal and Fractional 5, no. 4: 150. https://doi.org/10.3390/fractalfract5040150
APA StyleChoi, J., Qureshi, M. I., Bhat, A. H., & Majid, J. (2021). Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications. Fractal and Fractional, 5(4), 150. https://doi.org/10.3390/fractalfract5040150