Next Article in Journal
Population Forecast of China’s Rural Community Based on CFANGBM and Improved Aquila Optimizer Algorithm
Next Article in Special Issue
Random Times for Markov Processes with Killing
Previous Article in Journal
Comparison of Two Different Analytical Forms of Response for Fractional Oscillation Equation
Previous Article in Special Issue
Abstract Fractional Monotone Approximation with Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Nonexistence of Global Positive Solutions for p-Laplacian Equations with Non-Linear Memory

1
Department of Mathematics, Faculty of Arts and Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
2
FracDiff Research Group (DR/RG/03), Department of Mathematics, Sultan Qaboos University, Al-Khoud 123, Muscat P.O. Box 46, Oman
*
Author to whom correspondence should be addressed.
Fractal Fract. 2021, 5(4), 189; https://doi.org/10.3390/fractalfract5040189
Submission received: 20 September 2021 / Revised: 15 October 2021 / Accepted: 25 October 2021 / Published: 28 October 2021
(This article belongs to the Special Issue Probabilistic Method in Fractional Calculus)

Abstract

:
The Cauchy problem in R d , d 1 , for a non-local in time p-Laplacian equations is considered. The nonexistence of nontrivial global weak solutions by using the test function method is obtained.

1. Introduction

In this paper, we consider the following problem:
u t div | u | p 2 u = 0 t ( t s ) γ u ( s ) q d s , t > 0 , x R d , u 0 , t > 0 , x R d , u ( 0 , x ) = u 0 ( x ) , x R d ,
where p , q > 1 , d 1 , 0 < γ < 1 , and u 0 L l o c 2 ( R d ) . We are interested in the nonexistence of nontrivial global weak solutions.
The study of nonexistence of global solutions for nonlinear parabolic equations was started by Fujita [1]; he studied the Cauchy problem
u t Δ u = u p , p > 1 , t > 0 , x R d , u ( 0 , x ) = u 0 ( x ) 0 , x R d ;
and found that
(a) 
there is no nontrivial global solution of (2) whenever p < 1 + 2 / d .
(b) 
whereas (2) admits a global solution whenever p > 1 + 2 / d and u 0 ( x ) δ e | x | 2 , ( 0 < δ 1 ).
For the limiting case p = 1 + 2 / d , it is shown by Hayakawa [2] for d = 1 , 2 and by Kobayashi, Sirao and Tanaka [3] for d 1 that (2) has no global solution u ( x , t ) satisfying u ( , t ) L ( R d ) < for t 0 . Weissler in [4] proved that if (2) has no global solution u ( x , t ) satisfying u ( , t ) L q ( R d ) < for t > 0 and some q [ 1 , + ) whenever p = 1 + 2 / d . Therefore, the value
p F = 1 + 2 / d
is the limiting exponent of (2); it is called Fujita’s exponent.
Since Fujita’s paper, a sizeable number of extensions in many directions have been published. Recently, Cazenave, Dickstein and Weissler [5] extended the results of Fujita to the non-local in time heat equation
w t Δ w = 0 t ( t s ) ϑ | w ( s ) | p 1 w ( s ) d s , t > 0 , x R d , p > 1 , w ( 0 , x ) = w 0 ( x ) , x R d ,
where w 0 C 0 ( R d ) and ϑ ( 0 , 1 ) . In this case, the value of the critical Fujita exponent is
p c = max 1 ϑ , 1 + 2 ( 2 ϑ ) ( d 2 ( 1 ϑ ) ) + .
For the p-Laplacian equation
w t div | w | p 2 w = w q , t > 0 , x R d , p > 2 , q > 1 , w 0 , t > 0 , x R d , w ( 0 , x ) = w 0 ( x ) 0 , x R d ,
Zhao [6] and Mitidieri and Pohozaev [7] obtained the critical exponent
q * = p 1 + p / d ;
In fact, Zhao [6] proved that if p 1 < q < q * , then the Cauchy problem (6) has no nontrivial global solution, however if q > q * and w 0 ( x ) is small enough, then (6) admits a global solution. Mitidieri and Pohozaev [7] completed the study by proving the nonexistence of nontrivial global solution in the case q q * and for all p > 2 d / ( d + 1 ) . Andreucci and Tedeev [8,9] obtained similar results by considering doubly singular parabolic equations.
The test function method was used to prove the nonexistence of global solutions. This method was introduced by Baras and Kersner in [10] and developed by Zhang in [11] and Pohozaev and Mitidieri in [7], it was also used by Kirane et al. in [12].
Here, we are concerned with the non-existence of nontrivial global solutions of (1); inspired by [7], we choose a suitable test function in the weak formulation of the problem. Our main result is
Theorem 1.
Let u 0 L l o c 2 ( R d ) , 0 < γ < 1 , p > 1 , d 1 , q > max { 1 , p 1 } . Suppose that
q max p 1 γ ; q c , i f p < d 1 γ , q < , i f p d 1 γ ,
where
q c : = p 1 + ( d + p ) ( 1 γ ) ( p 1 ) + p d ( 1 γ ) d ( 1 γ ) p ,
then no nontrivial global weak solutions exist for problem (1).
Remark 1.
Note that (8) can be seen as follows
q max p 1 γ ; p 1 + ( d + p ) ( 1 γ ) ( p 1 ) + p d ( 1 γ ) ( d ( 1 γ ) p ) + ,
whence
  • when p = 2 and γ 1 , then q c p F where p F is defined in (3).
  • when p = 2 , then q c = p c where p c is defined in (5).
  • when γ 1 , and p > 2 d / ( d + 1 ) , then q c q * where q * is defined in (7).
Remark 2.
The same result can be obtained for the problem
u t d i v A ( t , x , u , u ) = 0 t ( t s ) γ u ( s ) q d s , t > 0 , x R d , u 0 , t > 0 , x R d , u ( 0 , x ) = u 0 ( x ) , x R d ,
where q > 1 , 0 < γ < 1 , d 1 , u 0 L l o c 2 ( R d ) , and A : R + * × R d × R + × R d R d is a Carathéodory function, where one assumes the existence of c 1 , c 2 > 0 and p > 1 such that
( A ( t , x , u , w ) , w ) c 1 | w | p , | A ( t , x , u , w ) | c 2 | w | p 1 ,
for all ( t , x , u , w ) R + * × R d × R + × R d . For the study of the non-existence of global solution, the following condition is needed
( A ( t , x , u , w ) , w ) c 3 | A ( t , x , u , w ) | p p 1 , f o r   a l l ( t , x , u , w ) R + * × R d × R + × R d ,
which is a general case of (9).
Some words on the structure of the paper: Some definitions and properties on the fractional integrals and derivatives are recalled in Section 2. Section 3, is reserved to the proof of the main result (Theorem 1).

2. Preliminaries

Definition 1.
A function A : [ a , b ] R , < a < b < , is said to be absolutely continuous if and only if there exists ψ L 1 ( a , b ) such that
A ( t ) = A ( a ) + a t ψ ( s ) d s .
A C [ a , b ] denotes the space of these functions. Moreover,
A C 2 [ a , b ] : = φ : [ a , b ] R / φ A C [ a , b ] .
Definition 2.
Let f L 1 ( c , d ) , < c < d < . The Riemann–Liouville left-and right-sided fractional integrals are defined by
I c | t α f ( t ) : = 1 Γ ( α ) c t ( t s ) ( 1 α ) f ( s ) d s , t > c , α ( 0 , 1 ) ,
and
I t | d α f ( t ) : = 1 Γ ( α ) t d ( s t ) ( 1 α ) f ( s ) d s , t < d , α ( 0 , 1 )
where Γ is the Euler gamma function.
Definition 3.
Let f A C [ c , d ] , < c < d < . The Riemann–Liouville left-and right-sided fractional derivatives are defined by
D c | t α f ( t ) : = d d t I c | t 1 α f ( t ) = 1 Γ ( 1 α ) d d t c t ( t s ) α f ( s ) d s , t > c , α ( 0 , 1 ) ,
and
D t | d α f ( t ) : = d d t I t | d 1 α f ( t ) = 1 Γ ( 1 α ) d d t t d ( s t ) α f ( s ) d s , t < d , α ( 0 , 1 ) .
Proposition 1
([13] ((2.64), p. 46))). Let α ( 0 , 1 ) and < c < d < . The fractional integration by parts formula
c d f ( t ) D c | t α g ( t ) d t = c d g ( t ) D t | d α f ( t ) d t ,
is satisfied for every f I t | d α ( L p ( c , d ) ) , g I c | t α ( L q ( c , d ) ) such that 1 p + 1 q 1 + α , p , q > 1 , where
I c | t α ( L q ( 0 , T ) ) : = f = I c | t α h , h L q ( c , d ) ,
and
I t | d α ( L p ( c , d ) ) : = f = I t | d α h , h L p ( c , d ) .
Remark 3.
A simple sufficient condition for functions f and g to satisfy (15) is that f , g C [ c , d ] , such that D t | d α f ( t ) , D c | t α g ( t ) exist at every point t [ c , d ] and are continuous.
Proposition 2
([13] (Chapter 1)). For 0 < α < 1 , < c < d < , we have the following identities
D c | t α I c | t α φ ( t ) = φ ( t ) , a . e . t ( c , d ) , f o r a l l φ L r ( c , d ) , 1 r ,
and
d d t D t | d α φ = D t | d 1 + α φ , φ A C 2 [ c , d ] ,
where D : = d d t .
Given T > 0 , let us define the function w 1 by
w 1 ( t ) = 1 t / T σ , t [ 0 , T ] , σ 1
The following properties concerning the functions w 1 will be used later on.
Lemma 1
([13] ((2.45), p. 40)). Let T > 0 , 0 < α < 1 . For all t [ 0 , T ] , we have
D t | T α w 1 ( t ) = Γ ( σ + 1 ) Γ ( σ + 1 α ) T α ( 1 t / T ) σ α ,
and
D t | T 1 + α w 1 ( t ) = Γ ( σ + 1 ) Γ ( σ α ) T ( 1 + α ) ( 1 t / T ) σ α 1 .
Any constant will be denoted by C.

3. Global Nonexistence

In this section, the proof of Theorem 1 will be presented.
We set
Q T = ( 0 , T ) × R d , B T , B = ( 0 , T ) × Ω ( B ) ,
where Ω ( B ) : = { x R n ; | x | < 2 B } , for T , B > 0 .
Definition 4
(Weak solution).
Let 0 < γ < 1 , and T > 0 . A function
u C ( [ 0 , T ] , L l o c 2 ( R d ) ) L 2 q ( ( 0 , T ) , L l o c 2 q ( R d ) ) L p ( ( 0 , T ) , W l o c 1 , p ( R d ) ) W 1 , 2 ( ( 0 , T ) , L l o c 2 ( R d ) ) ,
is said to be a weak solution of (1) if u | t = 0 = u 0 and the following formulation
Γ ( δ ) Q T I 0 | t δ ( u q ) φ d x d t = Q T | u | p 2 u φ d x d t + Q T u t φ d x d t ,
holds for all φ L 2 ( 0 , ; L 2 ( R d ) ) L p ( 0 ; , W 1 , p ( R d ) ) such that supp φ [ 0 , T ] × R d is compact, where I 0 | t δ is defined in (11) and δ = 1 γ . We denote the lifespan for the weak solution by
T w ( u 0 ) : = sup { T ( 0 , ] ; t h e r r e x i s t s a u n i q u e w e a k s o l u t i o n u t o ( 1 ) } .
Moreover, if T > 0 can be arbitrary chosen, i.e., T w ( u 0 ) = , then u is called a global weak solution of (1).
Proof Theorem 1.
Let u 0 be a global weak solution of (1), then
Γ ( δ ) Q T I 0 | t δ ( u q ) φ d x d t = Q T | u | p 2 u φ d x d t + Q T u t φ d x d t ,
for all T > 0 and all φ L 2 ( 0 , ; L 2 ( R d ) ) L p ( 0 ; , W 1 , p ( R d ) ) such that supp φ [ 0 , T ] × R d is compact, where δ = 1 γ . Let
φ ( x , t ) = D t | T δ φ ˜ ( x , t ) : = D t | T δ φ 1 ( x ) φ 2 ( t ) with φ 1 ( x ) : = Φ | x | / B , φ 2 ( t ) : = 1 t T + η ,
where , η 1 and Φ C ( R + ) be
Φ ( s ) = 1 , 0 s 1 , 1 s 2 , 0 , s 2 .
Then, using the integration-by-parts formula, we get
Γ ( δ ) B T , B I 0 | t δ ( u q ) D t | T δ φ ˜ d x d t + Ω ( B ) u 0 ( x ) D t | T δ φ ˜ ( 0 , x ) d x = B T , B | u | p 2 u φ d x d t B T , B u t φ d x d t .
From (15) and Lemma 1, we conclude that
B T , B D 0 | t δ I 0 | t δ ( u q ) φ ˜ d x d t + C T δ Ω ( B ) u 0 ( x ) φ 1 ( x ) d x = C B T , B | u | p 2 u φ d x d t C B T , B u t φ d x d t .
Moreover, using (16), u 0 0 and u 0 , it follows
B T , B u q φ ˜ d x d t C B T , B | u | p 1 | φ | d x d t + C B T , B u | t φ | d x d t = : I 1 + I 2 .
Next, by introducing φ ˜ 1 / q φ ˜ 1 / q in I 2 and applying the following Young’s inequality
A B 1 8 A q + C ( q ) B q , A 0 , B 0 , q + q = q q , C ( q ) = ( q 1 ) 8 1 / ( q 1 ) q q / ( q 1 ) ,
we get
I 2 1 8 B T , B u q φ ˜ d x d t + C B T , B φ 1 φ 2 1 q 1 D t | T 1 + δ φ 2 q d x d t .
In order to obtain a similar estimation on I 1 , let α < 0 be an auxiliary constant such that α > max { 1 , 1 p , 1 q p 1 } and let
u ϵ ( x , t ) = u ( x , t ) + ϵ , ϵ > 0 .
By taking φ ϵ ( x , t ) = u ϵ α ( x , t ) φ ( x , t ) as a test function where φ is given in (22), and using the fact that u is a weak solution, we obtain
Γ ( δ ) B T , B I 0 | t δ ( u q ) u ϵ α φ d x d t = B T , B | u | p 2 u ( u ϵ α φ ) d x d t + B T , B u t u ϵ α φ d x d t .
Using the integration-by-parts formula, we get
Γ ( δ ) B T , B I 0 | t δ ( u q ) u ϵ α φ d x d t = B T , B | u | p 2 u ( u ϵ α φ ) d x d t B T , B u t ( u ϵ α φ ) d x d t Ω ( B ) u 0 ( x ) u ϵ α ( x , 0 ) φ ( x , 0 ) d x .
Then, as
( u ϵ α φ ) = α u ϵ α 1 φ u + u ϵ α φ a n d t ( u ϵ α φ ) = α u ϵ α 1 φ t u + u ϵ α t φ ,
it comes
Γ ( δ ) B T , B I 0 | t δ ( u q ) u ϵ α φ d x d t = α B T , B | u | p u ϵ α 1 φ d x d t + B T , B | u | p 2 u φ u ϵ α d x d t α B T , B u u ϵ α 1 φ t u d x d t B T , B u u ϵ α t φ d x d t Ω ( B ) u 0 ( x ) u ϵ α ( x , 0 ) φ ( x , 0 ) d x .
Whereupon,
J 1 : = B T , B u u ϵ α 1 φ t u d x d t = B T , B ( u ϵ ϵ ) u ϵ α 1 φ t u d x d t = B T , B u ϵ α φ t u ϵ d x d t ϵ B T , B u ϵ α 1 φ t u ϵ d x d t = 1 α + 1 B T , B t ( u ϵ α + 1 ) φ d x d t ϵ α B T , B t ( u ϵ α ) φ d x d t = 1 α + 1 B T , B u ϵ α + 1 t φ d x d t 1 α + 1 Ω ( B ) u ϵ α + 1 ( x , 0 ) φ ( x , 0 ) d x + ϵ α B T , B u ϵ α t φ d x d t + ϵ α Ω ( B ) u ϵ α ( x , 0 ) φ ( x , 0 ) d x .
Similarly,
J 2 : = B T , B u u ϵ α t φ d x d t = B T , B ( u ϵ ϵ ) u ϵ α t φ d x d t = B T , B u ϵ α + 1 t φ d x d t ϵ B T , B u ϵ α t φ d x d t ,
and
J 3 : = Ω ( B ) u 0 ( x ) u ϵ α ( x , 0 ) φ ( x , 0 ) d x = Ω ( B ) ( u ϵ ( x , 0 ) ϵ ) u ϵ α ( x , 0 ) φ ( x , 0 ) d x = Ω ( B ) u ϵ α + 1 ( x , 0 ) φ ( x , 0 ) d x ϵ Ω ( B ) u ϵ α ( x , 0 ) φ ( x , 0 ) d x .
By J 1 , J 2 , and J 3 , it follows from (25) that
Γ ( δ ) B T , B I 0 | t δ ( u q ) u ϵ α φ d x d t = α B T , B | u | p u ϵ α 1 φ d x d t + B T , B | u | p 2 u φ u ϵ α d x d t 1 α + 1 B T , B u ϵ α + 1 t φ d x d t 1 α + 1 Ω ( B ) u ϵ α + 1 ( x , 0 ) φ ( x , 0 ) d x ,
then
Γ ( δ ) B T , B I 0 | t δ ( u q ) u ϵ α φ d x d t + | α | B T , B | u | p u ϵ α 1 φ d x d t = B T , B | u | p 2 u φ u ϵ α d x d t 1 α + 1 B T , B u ϵ α + 1 t φ d x d t 1 α + 1 Ω ( B ) u ϵ α + 1 ( x , 0 ) φ ( x , 0 ) d x B T , B | u | p 1 | φ | u ϵ α d x d t + 1 α + 1 B T , B u ϵ α + 1 | t φ | d x d t = B T , B ( | u | p 1 u ϵ ( α 1 ) ( p 1 ) p φ p 1 p ) ( | φ | u ϵ α ( α 1 ) ( p 1 ) p φ p 1 p ) d x d t + 1 α + 1 B T , B u ϵ α + 1 | t φ | d x d t | α | 2 B T , B | u | p u ϵ α 1 φ d x d t + C ( α ) B T , B u ϵ p 1 + α | φ | p φ 1 p d x d t + 1 α + 1 B T , B u ϵ α + 1 | t φ | d x d t ,
where Young’s inequality
A B | α | 2 A p p 1 + C ( α , p ) B p , A 0 , B 0 , C ( α , p ) = ( 2 ( p 1 ) ) p 1 | α | p 1 p p
has been used. Consequently, as u 0 , we conclude that
B T , B | u | p u ϵ α 1 φ d x d t C B T , B u ϵ p 1 + α | φ | p φ 1 p d x d t + C B T , B u ϵ α + 1 | t φ | d x d t .
Young’s inequality and the last inequality, allow to get
B T , B | u | p 1 | φ | d x d t = B T , B | u | p 1 u ϵ ( α 1 ) ( p 1 ) p φ p 1 p u ϵ ( 1 α ) ( p 1 ) p φ 1 p p | φ | d x d t B T , B | u | p u ϵ α 1 φ d x d t + C B T , B u ϵ ( 1 α ) ( p 1 ) φ 1 p | φ | p d x d t C B T , B u ϵ p 1 + α | φ | p φ 1 p d x d t + C B T , B u ϵ α + 1 | t φ | d x d t + C B T , B u ϵ ( 1 α ) ( p 1 ) φ 1 p | φ | p d x d t .
Applying Fatou’s and Lebesgue’s theorems, as ϵ 0 , we get
I 1 C B T , B u p 1 + α | φ | p φ 1 p d x d t + C B T , B u α + 1 | t φ | d x d t + C B T , B u ( 1 α ) ( p 1 ) φ 1 p | φ | p d x d t = : K 1 + K 2 + K 3 .
Now, we use the following Young’s inequality
A B 1 8 A q 1 + C ( q 1 ) B q 1 , A 0 , B 0 , q 1 + q 1 = q 1 q 1 , C ( q 1 ) = ( q 1 1 ) 8 1 / ( q 1 1 ) q 1 q 1 / ( q 1 1 ) ,
with q 1 = q / ( p 1 + α ) , the fact that ( φ 1 ) = φ 1 1 φ 1 , and the conditions that q > max { 1 , p 1 } , α < 0 to get estimations of K 1 , K 2 and K 3 ; we have
K 1 = B T , B ( u p 1 + α φ ˜ ( p 1 + α ) / q ) ( C φ ˜ ( p 1 + α ) / q | φ | p φ 1 p ) d x d t 1 8 B T , B u q φ ˜ d x d t + C B T , B φ 1 p q q p + 1 α | φ 1 | p q q p + 1 α φ 2 p 1 + α q p + 1 α D t | T δ φ 2 q q p + 1 α d x d t ,
K 2 = B T , B ( u α + 1 φ ˜ ( α + 1 ) / q ) ( C φ ˜ ( α + 1 ) / q | t φ | ) d x d t 1 8 B T , B u q φ ˜ d x d t + C B T , B φ 1 φ 2 α + 1 q 1 α D t | T 1 + δ φ 2 q q 1 α d x d t ,
and
K 3 = B T , B ( u ( 1 α ) ( p 1 ) φ ˜ ( 1 α ) ( p 1 ) / q ) ( C φ ˜ ( 1 α ) ( p 1 ) / q φ 1 p | φ | p ) d x d t 1 8 B T , B u q φ ˜ d x d t + C B T , B φ 1 p q q ( 1 α ) ( p 1 ) | φ 1 | p q q ( 1 α ) ( p 1 ) φ 2 ( 1 α ) ( p 1 ) q ( 1 α ) ( p 1 ) D t | T δ φ 2 q q ( 1 α ) ( p 1 ) d x d t .
Therefore, we conclude that
I 1 3 8 B T , B u q φ ˜ d x d t + C B T , B φ 1 p q q p + 1 α | φ 1 | p q q p + 1 α φ 2 p 1 + α q p + 1 α D t | T δ φ 2 q q p + 1 α d x d t + C B T , B φ 1 φ 2 α + 1 q 1 α D t | T 1 + δ φ 2 q q 1 α d x d t + C B T , B φ 1 p q q ( 1 α ) ( p 1 ) | φ 1 | p q q ( 1 α ) ( p 1 ) φ 2 ( 1 α ) ( p 1 ) q ( 1 α ) ( p 1 ) D t | T δ φ 2 q q ( 1 α ) ( p 1 ) d x d t .
Using the estimates of I 1 and I 2 into (23), we obtain
B T , B u q φ ˜ d x d t C B T , B φ 1 φ 2 1 q 1 D t | T 1 + δ φ 2 q q 1 d x d t + C B T , B φ 1 p q q p + 1 α | φ 1 | p q q p + 1 α φ 2 p 1 + α q p + 1 α D t | T δ φ 2 q q p + 1 α d x d t + C B T , B φ 1 φ 2 α + 1 q 1 α D t | T 1 + δ φ 2 q q 1 α d x d t + C B T , B φ 1 p q q ( 1 α ) ( p 1 ) | φ 1 | p q q ( 1 α ) ( p 1 ) φ 2 ( 1 α ) ( p 1 ) q ( 1 α ) ( p 1 ) D t | T δ φ 2 q q ( 1 α ) ( p 1 ) d x d t .
At this stage, we choose B = T θ , θ > 0 . Taking α small enough and passing to s = T 1 t , y = T θ x , we get from (27) that
0 T Ω ( T θ ) | u | q φ ˜ d x d t C T ( δ + 1 ) q q 1 + d θ + 1 + C T ( δ + θ p ) q p p + 1 + d θ + 1 .
If all exponents of T are negative, by taking T + and using the dominated convergence theorem, we conclude that u = 0 . In order to ensure the negativity of the exponents of T, it is sufficient to require
q < 1 + d θ ( d θ δ ) + = : q 1 ( θ ) and q < ( p 1 ) ( 1 + d θ ) ( d θ θ p + 1 δ ) + = : q 2 ( θ ) .
which is equivalent to
q < max θ > 0 min { q 1 ( θ ) , q 2 ( θ ) } .
To take into consideration q 1 ( θ ) and q 2 ( θ ) , we first look at ( d θ δ ) + and ( d θ θ p + 1 δ ) + and try to compare them in terms of θ , i.e, to compare between δ / d and ( 1 δ ) / ( ( p d ) + ) ; this requires to study two cases: p d / δ and p < d / δ .
(a) 
If p d / δ : In this case we have ( 1 δ ) / ( p d ) δ / d . As q 1 ( θ ) is non-increasing and q 2 ( θ ) is non-decreasing as a function of θ , (29) can be read as
q < max max θ [ δ d , + [ q 1 ( θ ) , max θ ] 0 , 1 δ p d ] q 2 ( θ ) = + .
(b) 
If p < d / δ : Technical calculations lead us to to distinguish 3 cases.
(i)
Case p > d . In this case we have δ / d < ( 1 δ ) / ( p d ) . So, (29) can be read as
q < max max θ [ θ 0 , + [ q 1 ( θ ) , max θ ] 0 , θ 0 ] q 2 ( θ ) = q 1 ( θ 0 ) = q 2 ( θ 0 ) = q c = max p 1 1 δ , q c ,
with
θ 0 : = δ p + 1 2 δ d p + p 2 d > 0 ,
using that q 1 ( θ ) is non-increasing and q 2 ( θ ) is non-decreasing.
(ii)
Case 2 d / ( d + 1 ) < p d . In this case, (29) can be read as
q < max max θ [ θ 0 , + [ q 1 ( θ ) , max θ ] 0 , θ 0 ] q 2 ( θ ) .
As p 2 ( θ ) is non-decreasing when p d δ , and non-increasing when p d δ , we can see that (30) is equivalent to
q < max p 1 1 δ , q c .
(iii)
Case of 1 < p 2 d / ( d + 1 ) : In this case, (29) can be read as
q < max max θ ] 0 , + [ q 2 ( θ ) = q 2 ( 0 ) = p 1 1 δ = max p 1 1 δ , q c .
Finally, to get similar results in the critical case
q = max p 1 1 δ , q c ,
we choose B = R θ T θ , where 1 R < T is such that T and R do not go simultaneously to infinity. Moreover, due to the calculation made above, a positive constant D independent of T exists such that
0 R d | u | q d x d t D ,
leading to
0 T Δ ( B ) | u | q φ ˜ d x d t 0 a s T ,
where Δ ( B ) : = { x R d ; B < | x | < 2 B } . Repeating a similar calculation as in the subcritical case, q < max { p 1 1 δ , q c } , and using Hölder’s inequality instead of Young’s one in K 1 and K 3 , we get
I 2 1 3 B T , B u q φ ˜ d x d t + C B T , B φ 1 φ 2 1 / ( q 1 ) D t | T 1 + δ φ 2 q d x d t ,
K 1 C 0 T Δ ( B ) u q φ ˜ d x d t p 1 + α q B T , B φ 1 ( q p + 1 α ) p q q p + 1 α | φ 1 | p q q p + 1 α φ 2 p 1 + α q p + 1 α D t | T δ φ 2 q q p + 1 α d x d t q p + 1 α q ,
K 2 1 3 B T , B u q φ ˜ d x d t + C B T , B φ 1 φ 2 α + 1 q 1 α D t | T 1 + δ φ 2 q q 1 α d x d t ,
and
K 3 C 0 T Δ ( B ) u q φ ˜ d x d t ( 1 α ) ( p 1 ) q B T , B φ 1 ( q ( 1 α ) ( p 1 ) ) p q q ( 1 α ) ( p 1 ) | φ 1 | p q q p + 1 α φ 2 ( 1 α ) ( p 1 ) q ( 1 α ) ( p 1 ) D t | T δ φ 2 q q ( 1 α ) ( p 1 ) d x d t q ( 1 α ) ( p 1 ) q .
Whereupon
B T , B u q φ ˜ d x d t C B T , B φ 1 φ 2 1 / ( q 1 ) D t | T 1 + δ φ 2 q q 1 d x d t + C 0 T Δ ( B ) u q φ ˜ d x d t p 1 q B T , B φ 1 ( q p + 1 ) p q q p + 1 | φ 1 | p q q p + 1 φ 2 p 1 q p + 1 D t | T δ φ 2 q q p + 1 d x d t q p + 1 q + C B T , B φ 1 φ 2 1 q 1 D t | T 1 + δ φ 2 q q 1 d x d t + C 0 T Δ ( B ) u q φ ˜ d x d t p 1 q B T , B φ 1 ( q p + 1 ) p q q p + 1 | φ 1 | p q q p + 1 φ 2 p 1 q p + 1 D t | T δ φ 2 q q p + 1 d x d t q p + 1 q .
Taking into account that q = max { p 1 1 δ , q c } and s = T 1 t , y = R θ T θ x , we get
B T , B | u | q φ ˜ d x d t C R d θ + C R d θ + p q θ q p + 1 0 T Δ ( B ) u q φ ˜ d x d t p 1 q
Taking the limit when T , and using (31), we obtain
0 R d | u | q d x d t C R d θ .
Finally, letting R , it comes that u = 0 . The proof of Theorem 1 is complete. □

Author Contributions

Conceptualization, M.K. and A.Z.F.; methodology, M.K. and A.Z.F.; validation, M.K., A.Z.F. and S.K.; formal analysis, M.K., A.Z.F. and S.K.; investigation, M.K., A.Z.F. and S.K.; writing—original draft preparation, M.K., A.Z.F. and S.K.; writing, M.K., A.Z.F. and S.K. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Fujita, H. On the blowing up of solutions of the problem for utu+u1+α. J. Fac. Sci. Univ. Tokyo 1966, 13, 109–124. [Google Scholar]
  2. Hayakawa, K. On nonexistence of global solutions of some semilinear parabolic equations. Proc. Jpn. Acad. 1973, 49, 503–525. [Google Scholar] [CrossRef]
  3. Kobayashi, K.; Sirao, T.; Tanaka, H. On the blowing up problem for semilinear heat equations. J. Math. Soc. Jpn. 1977, 29, 407–424. [Google Scholar] [CrossRef]
  4. Weissler, F.B. Existence and nonexistence of global solutions for a semilinear heat equations. Israel J. Math. 1981, 38, 29–40. [Google Scholar] [CrossRef]
  5. Cazenave, T.; Dickstein, F.; Weissler, F.D. An equation whose Fujita critical exponent is not given by scaling. Nonlinear Anal. 2008, 68, 862–874. [Google Scholar] [CrossRef]
  6. Zhao, J.N. On the Cauchy problem and initial traces for the evolution p-Laplacian equations with strongly nonlinear sources. J. Diff. Equ. 1995, 121, 329–383. [Google Scholar] [CrossRef] [Green Version]
  7. Mitidieri, E.; Pohozaev, S.I. A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities. Proc. Steklov. Inst. Math. 2001, 234, 1–383. [Google Scholar]
  8. Andreucci, D.; Teedev, A.F. A Fujita type result for a degenerate Neumann problem with non compact boundary. J. Math. Anal. Appl. 1999, 231, 543–567. [Google Scholar] [CrossRef] [Green Version]
  9. Liu, X.F.; Wang, M.X. The critical exponent of doubly singular parabolic equations. J. Math. Anal. Appl. 2001, 257, 170–188. [Google Scholar] [CrossRef] [Green Version]
  10. Baras, P.; Kersner, R. Local and global solvability of a class of semilinear parabolic equations. J. Diff. Equ. 1987, 68, 238–252. [Google Scholar] [CrossRef] [Green Version]
  11. Zhang, Q.S. A blow up result for a nonlinear wave equation with damping: The critical case. Comptes Rendus Acad. Sci. Paris 2001, 333, 109–114. [Google Scholar] [CrossRef]
  12. Kirane, M.; Laskri, Y.; Tatar, N.-E. Critical exponents of Fujita type for certain evolution equations and systems with Spatio-Temporal Fractional derivatives. J. Math. Anal. Appl. 2005, 312, 488–501. [Google Scholar] [CrossRef] [Green Version]
  13. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications, 1st ed.; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993; 976p. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Kirane, M.; Fino, A.Z.; Kerbal, S. Nonexistence of Global Positive Solutions for p-Laplacian Equations with Non-Linear Memory. Fractal Fract. 2021, 5, 189. https://doi.org/10.3390/fractalfract5040189

AMA Style

Kirane M, Fino AZ, Kerbal S. Nonexistence of Global Positive Solutions for p-Laplacian Equations with Non-Linear Memory. Fractal and Fractional. 2021; 5(4):189. https://doi.org/10.3390/fractalfract5040189

Chicago/Turabian Style

Kirane, Mokhtar, Ahmad Z. Fino, and Sebti Kerbal. 2021. "Nonexistence of Global Positive Solutions for p-Laplacian Equations with Non-Linear Memory" Fractal and Fractional 5, no. 4: 189. https://doi.org/10.3390/fractalfract5040189

APA Style

Kirane, M., Fino, A. Z., & Kerbal, S. (2021). Nonexistence of Global Positive Solutions for p-Laplacian Equations with Non-Linear Memory. Fractal and Fractional, 5(4), 189. https://doi.org/10.3390/fractalfract5040189

Article Metrics

Back to TopTop