Nonexistence of Global Positive Solutions for p-Laplacian Equations with Non-Linear Memory
Abstract
:1. Introduction
2. Preliminaries
3. Global Nonexistence
- (a)
- If: In this case we have . As is non-increasing and is non-decreasing as a function of , (29) can be read as
- (b)
- If: Technical calculations lead us to to distinguish 3 cases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fujita, H. On the blowing up of solutions of the problem for ut=Δu+u1+α. J. Fac. Sci. Univ. Tokyo 1966, 13, 109–124. [Google Scholar]
- Hayakawa, K. On nonexistence of global solutions of some semilinear parabolic equations. Proc. Jpn. Acad. 1973, 49, 503–525. [Google Scholar] [CrossRef]
- Kobayashi, K.; Sirao, T.; Tanaka, H. On the blowing up problem for semilinear heat equations. J. Math. Soc. Jpn. 1977, 29, 407–424. [Google Scholar] [CrossRef]
- Weissler, F.B. Existence and nonexistence of global solutions for a semilinear heat equations. Israel J. Math. 1981, 38, 29–40. [Google Scholar] [CrossRef]
- Cazenave, T.; Dickstein, F.; Weissler, F.D. An equation whose Fujita critical exponent is not given by scaling. Nonlinear Anal. 2008, 68, 862–874. [Google Scholar] [CrossRef]
- Zhao, J.N. On the Cauchy problem and initial traces for the evolution p-Laplacian equations with strongly nonlinear sources. J. Diff. Equ. 1995, 121, 329–383. [Google Scholar] [CrossRef] [Green Version]
- Mitidieri, E.; Pohozaev, S.I. A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities. Proc. Steklov. Inst. Math. 2001, 234, 1–383. [Google Scholar]
- Andreucci, D.; Teedev, A.F. A Fujita type result for a degenerate Neumann problem with non compact boundary. J. Math. Anal. Appl. 1999, 231, 543–567. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.F.; Wang, M.X. The critical exponent of doubly singular parabolic equations. J. Math. Anal. Appl. 2001, 257, 170–188. [Google Scholar] [CrossRef] [Green Version]
- Baras, P.; Kersner, R. Local and global solvability of a class of semilinear parabolic equations. J. Diff. Equ. 1987, 68, 238–252. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.S. A blow up result for a nonlinear wave equation with damping: The critical case. Comptes Rendus Acad. Sci. Paris 2001, 333, 109–114. [Google Scholar] [CrossRef]
- Kirane, M.; Laskri, Y.; Tatar, N.-E. Critical exponents of Fujita type for certain evolution equations and systems with Spatio-Temporal Fractional derivatives. J. Math. Anal. Appl. 2005, 312, 488–501. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications, 1st ed.; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993; 976p. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirane, M.; Fino, A.Z.; Kerbal, S. Nonexistence of Global Positive Solutions for p-Laplacian Equations with Non-Linear Memory. Fractal Fract. 2021, 5, 189. https://doi.org/10.3390/fractalfract5040189
Kirane M, Fino AZ, Kerbal S. Nonexistence of Global Positive Solutions for p-Laplacian Equations with Non-Linear Memory. Fractal and Fractional. 2021; 5(4):189. https://doi.org/10.3390/fractalfract5040189
Chicago/Turabian StyleKirane, Mokhtar, Ahmad Z. Fino, and Sebti Kerbal. 2021. "Nonexistence of Global Positive Solutions for p-Laplacian Equations with Non-Linear Memory" Fractal and Fractional 5, no. 4: 189. https://doi.org/10.3390/fractalfract5040189
APA StyleKirane, M., Fino, A. Z., & Kerbal, S. (2021). Nonexistence of Global Positive Solutions for p-Laplacian Equations with Non-Linear Memory. Fractal and Fractional, 5(4), 189. https://doi.org/10.3390/fractalfract5040189