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1. Introduction
In this paper, we consider the following problem:

ot
ut—div(|Vu|p_2Vu) :/ (t—s)""u(s)1ds, t>0,x € RY,
0

u>0, t>0,x€RY, @
u(0,x) = up(x), x e RY,

2

2 (R). We are interested in the nonexistence

wherep,g >1,d >1,0< vy <1l,andug € L
of nontrivial global weak solutions.

The study of nonexistence of global solutions for nonlinear parabolic equations was
started by Fujita [1]; he studied the Cauchy problem

uy — Au = ub, p>1,t>0,x€Rd,
@)
u(0,x) = up(x) >0, x e R%
and found that

(a) there is no nontrivial global solution of (2) whenever p < 1+ 2/d.

(b) whereas (2) admits a global solution whenever p > 1+ 2/d and up(x) < e,
0<ok1).

For the limiting case p = 1+ 2/d, it is shown by Hayakawa [2] for d = 1,2 and by
Kobayashi, Sirao and Tanaka [3] for d > 1 that (2) has no global solution u(x, t) satisfying
llu(-, )| Leo(rd) < 00 fort > 0. Weissler in [4] proved that if (2) has no global solution u(x, t)
satisfying [[u(-,#)|| qge)y < oo for t > 0 and some g € [1,+c0) whenever p =1+2/d.
Therefore, the value

is the limiting exponent of (2); it is called Fujita’s exponent.
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Since Fujita’s paper, a sizeable number of extensions in many directions have been
published. Recently, Cazenave, Dickstein and Weissler [5] extended the results of Fujita to
the non-local in time heat equation

t

wy — Aw = / (t—s)"w(s) [P w(s)ds, t>0,xeR?, p>1,
’ 4)

w(0,x) = wo(x), x € RY,

where wy € Co(R?) and ¢ € (0,1). In this case, the value of the critical Fujita exponent is

1 2(2—-19)
= g [ R G0
pe=max{ g1+ o5y | ©
For the p-Laplacian equation
wy — div(|Vw|”_2Vw> =uwl, t>0,x¢ Rd,p >2,q>1,
w >0, t>0,x€Rd, (6)
w(0,x) = wo(x) >0, x € RY,
Zhao [6] and Mitidieri and Pohozaev [7] obtained the critical exponent
¢ =p—1+p/d; )

In fact, Zhao [6] proved thatif p —1 < g < g%, then the Cauchy problem (6) has
no nontrivial global solution, however if g > ¢* and wy(x) is small enough, then (6)
admits a global solution. Mitidieri and Pohozaev [7] completed the study by proving
the nonexistence of nontrivial global solution in the case ¢ < ¢* and for all p > 2d/(d +
1). Andreucci and Tedeev [8,9] obtained similar results by considering doubly singular
parabolic equations.

The test function method was used to prove the nonexistence of global solutions. This
method was introduced by Baras and Kersner in [10] and developed by Zhang in [11] and
Pohozaev and Mitidieri in [7], it was also used by Kirane et al. in [12].

Here, we are concerned with the non-existence of nontrivial global solutions of (1);
inspired by [7], we choose a suitable test function in the weak formulation of the problem.
Our main result is

Theorem 1. Let ug € L%OC(R"), 0<y<1lp>14d>14q>max{l,p—1}. Suppose that

qémaX{p_l;qc}, ifp<i,
1= ®)
) d
> -
q < oo, pr_l—')/'
where p . . i
qemp—14 PO =p=D+p=dl=7)

d—(1—9)p ’

then no nontrivial global weak solutions exist for problem (1).
Remark 1. Note that (8) can be seen as follows

(d+77)(1—7)(P—1)+P—d(1—’7)}
(d—1—=7)p)+ ’

q §max{p;1;p—1+

whence
o when p =2 and vy — 1, then q. — pr where pr is defined in (3).
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o when p = 2, then q, = p. where p. is defined in (5).
e when v — 1, and p > 2d/(d + 1), then q. — q* where q* is defined in (7).

Remark 2. The same result can be obtained for the problem

t

uy — divA(t, x,u, Vu) = / (t—s)"Tu(s)ds, t>0,x R,
0

u>0, t>0,x R

u(0,x) = up(x), x e RY,

where g > 1,0 < ¢ < 1,d > Lug € L2 (RY), and A : R% xR xRy xR — Riisa

loc
Carathéodory function, where one assumes the existence of ¢1,cp > 0and p > 1 such that

(A(t,x,u,w),w) > c; |w|?,
{ 9)

|A(t,x,u, w)' <c |w|]ﬂ—1,

forall (t,x,u,w) € R x R? x Ry x R% For the study of the non-existence of global solution,
the following condition is needed

P
-1

(A(t,x,u,w),w) > c3|A(t,x,u,w)|7T, forall (t,x,u,w) € R} x R? x Ry X RY, (10)
which is a general case of (9).

Some words on the structure of the paper: Some definitions and properties on the
fractional integrals and derivatives are recalled in Section 2. Section 3, is reserved to the
proof of the main result (Theorem 1).

2. Preliminaries

Definition 1. A function A : [a,b] — R, —co < a < b < oo, is said to be absolutely continuous
if and only if there exists ¢ € L'(a,b) such that

t
A() = Aa) +/ (s) ds.
AC|a, b] denotes the space of these functions. Moreover,
AC?[a,b] := {¢: [a,b] > R/¢' € ACla,b]}.

Definition 2. Let f € L(c,d), —co < ¢ < d < oo. The Riemann—Liouville left-and right-sided
fractional integrals are defined by

I8, f(t) == F(la) /Ct(t —s) (=0 f(s)ds, t>c, ae(0,1), (11)
and ) ;
I, f(1) = W/t (s— 1) f(s)ds, t<d, ac(01) (12)

where T is the Euler gamma function.

Definition 3. Let f € AC|c,d], —co < ¢ < d < oo. The Riemann-Liouville left-and right-sided
fractional derivatives are defined by

D) = D r () = r(ll_a);t/;(t—s)—“f(s) ds, t>coae(01), (13)
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and

d
Dyaf (1) := ;tltld“‘f(t)z—ml_a)i/t(s—t)—“f(s)ds, t<d, ac(01). (14)

Proposition 1 ([13] ((2.64), p. 46))). Let & € (0,1) and —oo < ¢ < d < oo. The fractional
integration by parts formula

[ ropysmar = [ sooioa (15)

is satisfied for every f € It|d(LP(c,d)) gel |t(L‘i(c,d)) such that % +% <l+4+wapg>1,
where

1B,(90,T)) i= {f = 13, he L(c,d)},
and

18,(LP (¢, d)) = {f =ik he L”(c,d)}.

Remark 3. A simple sufficient condition for functions f and g to satisfy (15) is that f,g € Clc,d|,

such that D;X'df(t), Dg“tg(t) exist at every point t € [c,d| and are continuous.

Proposition 2 ([13] (Chapter 1)). For 0 < & < 1, —oo < ¢ < d < oo, we have the following
identities

D“f‘tlﬁ‘lt(p(t) =¢(t),ae te(cd), forallp €L (c,d),1<r<oo, (16)

and p
T D‘txld(l’ = D}g"‘qo, ¢ € AC*[c,d], (17)

where D := dl
Given T > 0, let us define the function w; by
wi(t)=(1—t/T), tel0,T],c>1 (18)
The following properties concerning the functions w; will be used later on.

Lemma 1 ([13] ((2.45), p. 40)). Let T > 0,0 < a < 1. Forall t € [0, T|, we have

o _ F(U+ 1) -1 _ oc—u
Dt\Twl(t) = 1—-(0_+ 1_ DC)T (1 t/T) ’ (19)
and
1+a _ F(U+1) —(14a) c—a—1
Dip'e(t) = pig gy T AT 20

Any constant will be denoted by C.

3. Global Nonexistence
In this section, the proof of Theorem 1 will be presented.

We set
Qr=(0,T)xR?  Brp=(0,T)x Q(B),

where )(B) := {x € R"; |x| < 2B}, for T, B > 0.
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Definition 4 (Weak solution).
Let0 <y <1,and T > 0. A function

u € C([0,T), L, (R) NL2((0, T), Lyt (RY) NLP((0, T), W, (R)) nW2((0, T), L}, (RY)),

loc

is said to be a weak solution of (1) if u),_, = ug and the following formulation
1"(5)/ B (u) pdxdt = / IVulP-2VuV e dx dt +/ g dx dt, 1)
Qr Qr Qr

holds for all ¢ € L2(0,00; L2(R9)) N LP(0; 00, WYP (R)) such that suppp C [0,T] x R? is
compact, where Ig‘ , is defined in (11) and § = 1 — «y. We denote the lifespan for the weak solution by
Tw(ug) := sup{T € (0,00]; there exists a unique weak solution u to (1)}.

Moreover, if T > 0 can be arbitrary chosen, i.e., Ty(11g) = oo, then u is called a global weak
solution of (1).

Proof of Theorem 1. Let u > 0 be a global weak solution of (1), then
1"((5)/ Ig‘t(uq)q)dxdt = / |VulP=2VuVedxdt —i—/ urdxdt,
Qr Qr Qr

forall T > 0and all ¢ € L?(0,00; L2(R%)) N LP(0; 00, WP (R4)) such that suppe C [0, T] x
R? is compact, where § = 1 — . Let

p(x,1) = Dir(9(x,1)) == D (9] (x)a (1))
£\

with  ¢1(x) := ®(|x|/B), ¢2(t) := (1 - T>+' (22)

where £, > 1and ® € C®(R4) be

Then, using the integration-by-parts formula, we get

r(s/ 10 (DS, dx dt / D’ (0, x)d
(9) Br s O\t(”) TP 4X + Q(B)”O(x) t\T(P( x) dx

= / |Vu|p*2VuV(pdxdt—/ u drdxdt.
Brp B

T,B

From (15) and Lemma 1, we conclude that

D1 (uf) 6 dx dt CT“S/ {(x)d
/BT,B ojelop (u) @dxdt  + Q(B)”O(x)%(x) x

- c/ \Vuv’*zwv(pdxdt—c/ 1 drg dx dt.
Brp Brp
Moreover, using (16), ug > 0 and u > 0, it follows

/ uq(pdxdtSC/ \Vu|7”1|V(p|dxdt+C/ Wopldxdt =1, + L. (23)
BT,B BT,B BT,B
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Next, by introducing ¢'/7¢~1/4 in I, and applying the following Young’s inequality

! —1)81/(a-1)
AB < SAT4C(@)BY, A>0,B>0,q+q =qq, c(q):%,
8 g1/ (1-1)

we get
1 — q
< Z 95 -1 144 )
h<g /BT,Bu (Pdth—i_C/BT,B P19, (Dt\T goz) dx dt (24)

In order to obtain a similar estimation on I;, let &« < 0 be an auxiliary constant such

that « > max{—1,1—p,1 — %} and let

ue(x, t) =u(x,t)+¢e, €>0.

By taking @c(x,t) = u%(x,t)@(x,t) as a test function where ¢ is given in (22), and
using the fact that u is a weak solution, we obtain

1"(5)/ Iglt(u”’)uz(pdxdt:/ |VulP72VuV (ulg) dxdt+/ up ug @ dx dt.
Brp B Br

T,B

Using the integration-by-parts formula, we get
F((S)/ Ig‘t(u")ug(pdxdt = / |VulP72VuV (ubep) dx dt
BT,B BT,B

- o(utp) dxdt — | %(x,0)¢(x, 0) dx.
Jy,, 1ettg) dxat = [ o(x)u (x,0)9(x,0) dx

Then, as

V(ule) = au toVu+utVe and 9;(ulep) = au’ 1ediu + utd;e,
it comes
F(&)/ Ig“(uq)uggo dx dt
Br,p
:oc/ |Vu|pug*1godxdt+/ \Vu|P~2VuVu® dx dt
Br s Brp

a—1 « "
N ad‘”‘/ addf—/ ,0)9(x,0)dx. (25
“‘/BT,B Ulle ~poruax - Uucorpax - up(x)ul(x,0)p(x,0)dx.  (25)

Whereupon,
i o= / uu® Lo dx dt
Brp
= /B (e — €)ub L pou dx dt
T,B

= / ul @oue dx dt — e/ u® 1 9osuc dx dt
Brp Brp

— 1 a+1 _E/ o
_ a+1/zsf,gat(”€ Jodudt = [ 9 dxds

= - ! a+1 _L a+1
= “+1/BT/BMS drpdxdt P Q(B)ue (x,0)¢(x,0) dx

S €l
+0(/BT,B Meat(dedt—i-a/Q(B) ME(xlo)q)(x,O)dx,
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Similarly,
: = / uugop dx dt
Br,p
= / (e — €)ugorp dx dt
Bt
- / ug‘“atq)dxdt—e/ U3y dx dt,
Br,p Br,p
and
T = (x,0 ,0)d
B = totu (0 (x 0) dx
-/ 1y (1e5:0) =€) (x,0)(x,0) dx
= /Q(B) ut(x,0)¢(x,0) dx—e/Q(B) ul(x,0)¢@(x,0) dx.
By J1,J2, and J3, it follows from (25) that
F((S)/ Ig‘t(uq)u"e‘q)dxdt = oc/ |VulPud o dxdt +
BT,B BT,B
1
p—2 « _ a+1
/B IVulP=*Vu¥ ¢ uf dx dt ] BTBue or dx dt
oc—l—l
oc—l—l (x,0)p(x,0)dx,
then
r(&)/ Ig‘t(uq)ug(pdxdt+|ac|/ V| Put Vg dx dt
BT,B BT,B
1
= VulP2VuVeuldxdt — —— [ ult1o,pdxdt
/BT,B| | P U a+1 Brs € tQ
_ 1 a+1
251 o) u (x,0)¢(x,0) dx
S/B |Vu|P~ 1V e|ul dxdt+ / ut 0| dux dt
TB
(e=1)(p-1) = RN
= [ (vurtue T o) (Velus T g )dxdt
Brp
a+1
+— /BT,B W3y dx dt
< M/ |Vu|”ugflq)dxdt+C(oc)/ u§71+'x|V(p|p(p1*p dx dt
2 JBrs Br,p
a+1
+a+1 /BT,B ug | orp| dx dt,
where Young’s inequality
_ p-1
aB< A L p) B, A>0,B>0, Clap) = 2P o

2

has been used. Consequently, as u > 0, we conclude that

|a[P=1pP

/ \Vu|Putlpdxdt < C/ ul Y VP o P dx dt + C/ ut19, | dx dt.
Brp Br Br



Fractal Fract. 2021, 5, 189 8 of 12

Young’s inequality and the last inequality, allow to get

/B (VulP~1 |V | dx dt

@1, A-a)p-1) 1,
_/ VulPue 797 | (ue " @7 |Vl | dxdt
TB

< /B |Vu|Pubtodxdt + C/B ugl_“)(p_l)(pl_pW(p\p dx dt
T,B T,B

< c/ Wl I [P ol dxdt+c/ U113, | du dt
Br,p Br,p

+C . ué(;l_“)(p_l)(pPﬂV(p\p dx dt.
T,B

Applying Fatou’s and Lebesgue’s theorems, as € — 0, we get

L < C/ up*1+“|V(p]p(plfpdxdt+C/ u* 1|94 dux dt
Brp Brp

+C l; u(l_”‘)(p_l)gol_pwgﬂp dxdt =: K1 + Kp + K.
Y PT,B

Now, we use the following Young’s inequality

1 / —1)8/(;1-1)
AB < AT +C(q)BN, A>0,B>0, qi+4q1=qa, Clq) = o ql/)(q1—1> ’
71

with g; = g/(p — 1+ &), the fact that V(¢{) = £¢{ !V ¢,, and the conditions that g >
max{1,p — 1}, « < 0 to get estimations of K;, K, and K3; we have

Ky = / (uP~ 1 gP=150/0y(C G (P=140)/0|7 o|P 1 ~P) dx dt
Brp

1
< = ul@dx dt
~ 8 /B ¢

_p—lta

g
+C/ (pl Rl Y|V gq|Trit= e <, T gptia (Dt\T§”2> TP g dt,

Ke = [ (gt (C g o)) dy
T,B

1 g / _qa;rl
< - ~ —1-a
< S/Br,su (pdxdt+C/BT,B P19, ( HT (p2> dxdt,
and
Ky = /B (== g1-2) -1/ (C g~ (1= P=1/141-P |V o|P) dx dt
T,B
1
< = T¢ dx dt
-8 BTBu P

# _(=a)(p=1) q

7‘7 - N RN, —
+C/ 4’1 TP |G gy |01 ) 70 P (Dfngoz)q’“’“””’” dx dt.
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Therefore, we conclude that

3 "
L < 7/ G dox dt
=8 Br,p ¢
p—1+a

=i e e = e e
+ C/B o) |V 1|77 g, (Dt|T§02) dx dt
T,B

a+1 _q
—ri-a . p—y
+ C/ go{q)z a1 (Dtlﬁ‘s(pz) 1 dx dt
Brp
— rq g __(1=w)(p-1) q -
+C ¢, ) 17 gy |- T 9, g-1-a)(p-1) ( |T9”2) =0 gy dt.

Br,p

Using the estimates of I; and I into (23), we obtain

ul dx dt
/BT,B q)

: 1 .
<C / 9o, " (Dlile2) " dxat
JBr,p

(- qu;flfa P qppﬁaa ) ’H’%

+C ) » V|77 g, (D |T(p2) dx dt

T,B

¢ P (1ae . =

+C/B P, T (Dt‘;‘)g@) T dx dt

g __(=a)(p-1)

P T _L—o)lp—l) 9
+C/ (Pl = = ey |V(p |m¢2 —=a)(p-1) (D;S\T(PZ) a=0=)=1 1. 4. (27)

At this stage, we choose B = T, § > 0. Taking a small enough and passing to
s =T 't,y = T %, we get from (27) that

T _ (6+1)q (5+6p>q
/ /Q( , Julfgpdxdr < T HAOHL | o et (28)
T

If all exponents of T are negative, by taking T —> +oo and using the dominated
convergence theorem, we conclude that u = 0. In order to ensure the negativity of the
exponents of T, it is sufficient to require

14+d0 (p—1(A+4d0)
<m—.q1(9) and q<(d0—9p+l—(5)+ =:q2(0).

which is equivalent to

q < maxmin{gs (), 42(9)}- (29)
>0

To take into consideration g;(6) and g,(6), we first look at (d0 — )4 and (d6 —
fp+1—9)4 and try to compare them in terms of 6, i.e, to compare between ¢/d and
(1—-9)/((p—d)+); this requires to study two cases: p > d/dand p < d /4.

(a) If p > d/5: In this case we have (1 —0)/(p —d) < 6/d. As q1(0) is non-increasing and
g2(0) is non-decreasing as a function of 6, (29) can be read as

g < max{q max q1(0), max q2(0) p = +oo.
0e[§,+oo| fc ]01 g1

(b) If p < d/é: Technical calculations lead us to to distinguish 3 cases.



Fractal Fract. 2021, 5, 189

10 of 12

(i) Case p > d. In this case we have 6/d < (1 —0)/(p — d). So, (29) can be read as

_ _ . p—1
q< max{eefé})?fm[ql(e)'eéﬁ‘éé‘o} qz(f))} = q1(60) = 92(60) = 9c = maX{ T ﬂc},

with
op+1—-25

R PR T

>0,
using that g1 (6) is non-increasing and ¢, (6) is non-decreasing.

(ii) Case 2d/(d +1) < p < d. In this case, (29) can be read as

0 0) L.
q< maX{ Qer[gzéfw[ql( ), B q2( )} (30)

As py(8) is non-decreasing when p > dé, and non-increasing when p < dJ, we can see that

(30) is equivalent to
p—1
g < max{1 _(5,%}.

(iii) Case of 1 < p < 2d/(d + 1): In this case, (29) can be read as

—1 —1
g < max{ max q2(9)} =q2(0) = % = max{ij_(s,qc}.

0€]0,+o0[

Finally, to get similar results in the critical case

-1
q :max{rlj_(s,qc},

we choose B = R*9T9, where 1 < R < T is such that T and R do not go simultaneously to
infinity. Moreover, due to the calculation made above, a positive constant D independent

of T exists such that -
/ / |u|Tdxdt < D,
0 R4

T
/ / |u|f¢dxdt -0 as T — oo, (31)
0 JAB)

leading to

where A(B) := {x € RY; B < |x| < 2B}. Repeating a similar calculation as in the

subcritical case, § < max{ %, qc}, and using Holder’s inequality instead of Young’s one
in Ky and K3, we get

1 ~ ~1/(-1) (y1e6, \7
L < 7/ 1l dxdt+C/ {1/ (plt dx dt,
253 g, 17 52, 7192 (Di92)

p—1+a

T
KlgC(// u‘%pdxdt) '
0 JA(B)
q—p+l-a

f(q—w:a)—wi g _ P—i‘;'x 5 qp% q

q—p+l—a . v q—p+l—a - —&

5, 91 Vo T gy T (D) T )
T,

__atl 1
K < : / wdxdt + C / Pl T (D}Eéq)z) TN dxdt,
3 B JBr
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and
T (A=) (p=1)
K3§C(/ / uq~dxdt)
0 JAB) ¢
—(1=a)(p=1)
Hg=(1-0)(p—1)—pg ) SR .
i 9, —(1=a)(p=1) V|77 T g, q*(lfa)wfl)( \T(PZ) DD gy d
T.B
Whereupon

ul@dx dt
/BT,B ¢

g
-1/(g—1
< C/ i, )<D}‘§5¢2> “dxdt
Br,g

p—1

T 7
+c<// qubdxdt)
0 Jam)
1 q

i(wﬂ){w p- L - q
s 1 T gy [T gy T (Dé\ﬂ”z)q o ddt
T.B

7% 146 ﬂ%l
+< | (plgoz (Difa) ™" dxat

T =
+c(// u”’@dxdt)
o Jam)
q7p+1

Ha—p+1)—pq _p—1 =1 q
/ o " . |V(p1|q ,,+1 4 p+1 (Df‘Tqu)q Py dt ) (32)

Taking into account that g = max{%, gc}ands = Tt y = ROT %%, we get

p—1

0 T o

/ lul1gdxdt < CR™ 4+ CR™ d"*ﬂpzﬂ(// uq(i)dxdt)q
Br,p 0 JA(B)

Taking the limit when T — oo, and using (31), we obtain

/ /Rd lul7dxdt < CR™,
0

Finally, letting R — oo, it comes that # = 0. The proof of Theorem 1 is complete. [
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