Abstract Fractional Monotone Approximation with Applications
Abstract
:1. Introduction
2. Fractional Calculi
2.1. Abstract Fractional Calculus
2.2. About Prabhakar Fractional Calculus
2.3. From Generalized Non-Singular Fractional Calculus
3. Main Results
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shisha, O. Monotone approximation. Pac. J. Math. 1965, 15, 667–671. [Google Scholar] [CrossRef] [Green Version]
- Anastassiou, G.A.; Shisha, O. Monotone approximation with linear differential operators. J. Approx. Theory 1985, 44, 391–393. [Google Scholar] [CrossRef] [Green Version]
- Anastassiou, G.A. Bivariate Monotone Approximation. Proc. Am. Math. Soc. 1991, 112, 959–964. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Frontiers in Approximation Theory; World Scientific Publ. Corp.: Hackensack, NJ, USA; Singapore, 2015. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations, 1st ed.; Lecture Notes in Mathematics; Springer: New York, NY, USA; Heidelberg, Germany, 2010; Volume 2004. [Google Scholar]
- Teljakovskii, S.A. Two theorems on the approximation of functions by algebraic polynomials. Mat. Sb. 1966, 70, 252–265. (In Russian); Am. Math. Soc. Trans. 1968, 77, 163–178. (In English) [Google Scholar]
- Trigub, R.M. Approximation of functions by polynomials with integer coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 1962, 26, 261–280. (In Russian) [Google Scholar]
- Anastassiou, G.A. Foundations of Generalized Prabhakar-Hilfer fractional Calculus with Applications. 2021; submitted. [Google Scholar]
- Polito, F.; Tomovski, Z. Some properties of Prabhakar-type fractional calculus operators. Fract. Differ. 2016, 1, 73–94. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions, Related Topics and Applications; Springer: Heidelberg, Germany; New York, NY, USA, 2014. [Google Scholar]
- Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A practical Guide to Prabhakar Fractional Calculus. Fract. Calc. Appl. Anal. 2020, 23, 9–54. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.K.; Kalla, S.L.; Saxena, R. Multivariate analogue of generalized Mittag-Leffler function. Integral Transform Special Funct. 2011, 22, 533–548. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kompe’ de Feriet’s double hypergeometric series. Math. Nachr. 1972, 53, 151–159. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Anastassiou, G.A. Multiparameter Fractional Differentiation with non singular kernel. 2021; submitted. [Google Scholar]
- Losada, J.; Nieto, J.J. Properties of a New Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastassiou, G.A. Abstract Fractional Monotone Approximation with Applications. Fractal Fract. 2021, 5, 158. https://doi.org/10.3390/fractalfract5040158
Anastassiou GA. Abstract Fractional Monotone Approximation with Applications. Fractal and Fractional. 2021; 5(4):158. https://doi.org/10.3390/fractalfract5040158
Chicago/Turabian StyleAnastassiou, George A. 2021. "Abstract Fractional Monotone Approximation with Applications" Fractal and Fractional 5, no. 4: 158. https://doi.org/10.3390/fractalfract5040158
APA StyleAnastassiou, G. A. (2021). Abstract Fractional Monotone Approximation with Applications. Fractal and Fractional, 5(4), 158. https://doi.org/10.3390/fractalfract5040158