Predictors of Smartphone Addiction and Social Isolation among Jordanian Children and Adolescents Using SEM and ML
Abstract
:1. Introduction
2. Research Hypotheses
3. Research Methods
3.1. Research Context
3.2. Measurement Items
3.3. Participants and Procedures
4. Data Analysis and Results
4.1. Descriptive Analysis
4.2. SEM Analysis
4.2.1. Measurement Model Assessment
4.2.2. Model Fit Assessment
4.2.3. Model Reliability, Validity Measures, and Concerns
4.2.4. Structural Model Assessment
4.3. Moderation Effects
4.4. Machine Learning Techniques Validation and Prediction
ML Results and Discussion
5. Discussion
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Academic Implications
5.4. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Constructs | ID: Items/Measure |
---|---|
Demographic Information | |
| 1. Male. 2. Female. |
| 1: 18 to less than 28. 2: 28 to less than 38 years old. 3: 38 to less than 48 years old. 4: 48 to less than 58 years old. 5: 58 and over. |
| 1. High school and less. 2: Diploma. 3: Bachelor. 4: Master. 5: Ph.D. |
| 1. Married. 2. Divorced. 3. Widow. |
| 1. Male. 2. Female. |
| 1: 0 to less than 3 years old. 2: 3 to less than 6 years old. 3: 6 to less than 9 years old. 4: 9 to less than 12 years old. 5: 12 to less than 15 years old. 6: 15 to less than 17 years old. |
| 1. Low. 2: Good. 3: Excellent. |
| 1. One. 2: Two. 3: Three. 4: Four. 5: Five and more. |
| 1. One. 2: Two. 3: Three. 4: Four. 5: Five and more. |
| 1: Public. 2: Private. 3: UNRWA. 4: Not in school. 5: Nursery. 6: Preschool. |
| 1: Facebook. 2: Twitter. 3: TikTok. 4: Snapchat. 5: LinkedIn. 6: YouTube. 7: Instagram. 8: Games. 9: YouTube Kids. 10: Other. |
Perceived Usefulness (PU) | PU1: Smartphones are useful in my child’s daily life. PU2: Using a smartphone helps my child accomplish things (like studying) more quickly. PU3: Using a smartphone increases my child’s educational levels. PU4: Using a smartphone increases my child’s cultural levels. PU5: Using a smartphone increases my child’s knowledge levels. PU6: Using a smartphone increases my child’s chances of learning and achieving important things, including education, skills, and knowledge. |
Perceived Ease of Use (PEU) | PEoU1: Learning how to use a smartphone is easy for my child. PEoU2: My child’s interaction with a smartphone is clear and understandable. PEoU3: Smartphones are easy to use for my child. PEoU4: It is easy for my child to become skillful at using smartphones. |
Trust (TR) | TR1: I believe that smartphones are trustworthy, so I let my child use them. TR2: I do not doubt the honesty of smartphones. TR3: I feel assured that legal and technological structures adequately protect my child from problems associated with using smartphones. TR4: Even if not monitored, I would trust my child’s smartphone. TR5: I trust the smartphone that my child is using. |
Perceived Enjoyment (EN) | EN1: My child feels that using a smartphone is fun. EN2: My child feels that using a smartphone is enjoyable. EN3: My child feels that using a smartphone is very entertaining. |
Social Influence (SI) | SI1: People I know think that my child should use a smartphone. SI2: People who are important to me would recommend that my child use the smartphone. SI3: People who are important think that my child should use a smartphone. SI4: Everyone around me is thinking that my child should use a smartphone because their children are using smartphones. |
Behavioral Intention (BI) | BI1: I intend to let my child use the mobile phone in the future. BI2: My child is using the smartphone, and he/she always tries to use it whenever he/she can at any time. BI3: I plan to keep my child’s smartphone in use in the future. BI4: I will recommend that others let their children use smartphones. |
Smartphone Addiction (SPA) | SPA1: My child sometimes ignores important things because of his/her interest in smartphones. SPA2: My child often fails to get enough rest because of using a smartphone. SPA3: My child’s social life has sometimes suffered because of using a smartphone. SPA4: Arguments have sometimes arisen from people around me because of the time my child spends on smartphones. SPA5: Using a smartphone has sometimes interfered with my child’s studying, playing, or social activities. SPA6: My child is sometimes late for engagements (like studying) because of using smartphones. SPA7: When my child is not using a smartphone, I feel that he/she often feels agitated and confused. SPA8: I have made unsuccessful attempts to reduce the time my child uses a smartphone. SPA9: I think that my child is addicted to smartphones. |
Social Isolation (SocIso) | SocIso1: I feel that even when children are around my child, they ignore him because he is busy using his smartphone. SocIso2: I feel that other children avoid talking to my child because he is busy using a smartphone. SocIso3: I feel that my child is isolated even if he is with other children because he is busy using his smartphone. SocIso4: I feel that my child is isolated by others because he is busy using a smartphone SocIso5: I feel that my child is isolated from others because he is busy using a smartphone. |
References
- Schüz, J. Mobile Phone Use and Exposures in Children. Bioelectromagnetics 2005, 26, S45–S50. [Google Scholar] [CrossRef] [PubMed]
- Sahu, M.; Gandhi, S.; Sharma, M.K. Mobile Phone Addiction among Children and Adolescents. J. Addict. Nurs. 2019, 30, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Ihm, J. Social Implications of Children’s Smartphone Addiction: The Role of Support Networks and Social Engagement. J. Behav. Addict. 2018, 7, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Siu, A.C.K. Problematic Mobile Phone Use by Hong Kong Adolescents. Front. Psychol. 2020, 11, 551804. [Google Scholar] [CrossRef]
- Samaha, M.; Hawi, N.S. Associations between Screen Media Parenting Practices and Children’s Screen Time in Lebanon. Telemat. Inform. 2017, 34, 351–358. [Google Scholar] [CrossRef]
- Christakis, D.A.; Zimmerman, F.J. Violent Television Viewing during Preschool Is Associated with Antisocial Behavior during School Age. Pediatrics 2007, 120, 993–999. [Google Scholar] [CrossRef]
- Øverby, N.C.; Klepp, K.-I.; Bere, E. Changes in Screen Time Activity in Norwegian Children from 2001 to 2008: Two Cross Sectional Studies. BMC Public Health 2013, 13. [Google Scholar] [CrossRef]
- Plowman, L.; McPake, J.; Stephen, C. The Technologisation of Childhood? Young Children and Technology in the Home. Child. Soc. 2010, 24, 63–74. [Google Scholar] [CrossRef]
- Bertschek, I.; Niebel, T. Mobile and More Productive? Firm-Level Evidence on the Productivity Effects of Mobile Internet Use. Telecommun. Policy 2016, 40, 888–898. [Google Scholar] [CrossRef]
- Lee, K.Y.; Lee, M.; Kim, K. Are Smartphones Helpful? An Empirical Investigation of the Role of Smartphones in Users’ Role Performance. Int. J. Mob. Commun. 2017, 15, 119. [Google Scholar] [CrossRef]
- Abu-Taieh, E.; AlHadid, I.; Masa’deh, R.; Alkhawaldeh, R.S.; Khwaldeh, S.; Alrowwad, A. Factors Influencing YouTube as a Learning Tool and Its Influence on Academic Achievement in a Bilingual Environment Using Extended Information Adoption Model (IAM) with ML Prediction—Jordan Case Study. Appl. Sci. 2022, 12, 5856. [Google Scholar] [CrossRef]
- Masa’deh, R.; AlHadid, I.; Abu-Taieh, E.; Khwaldeh, S.; Alrowwad, A.; Alkhawaldeh, R.S. Factors Influencing Students’ Intention to Use E-Textbooks and Their Impact on Academic Achievement in Bilingual Environment: An Empirical Study Jordan. Information 2022, 13, 233. [Google Scholar] [CrossRef]
- George, T.P.; DeCristofaro, C. Use of Smartphones with Undergraduate Nursing Students. J. Nurs. Educ. 2016, 55, 411–415. [Google Scholar] [CrossRef]
- Remón, J.; Sebastián, V.; Romero, E.; Arauzo, J. Effect of Using Smartphones as Clickers and Tablets as Digital Whiteboards on Students’ Engagement and Learning. Act. Learn. Higher Educ. 2017, 18, 173–187. [Google Scholar] [CrossRef]
- Kim, Y.; Wang, Y.; Oh, J. Digital Media Use and Social Engagement: How Social Media and Smartphone Use Influence Social Activities of College Students. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 264–269. [Google Scholar] [CrossRef]
- O’Connor, T.M.; Hingle, M.; Chuang, R.-J.; Gorely, T.; Hinkley, T.; Jago, R.; Lanigan, J.; Pearson, N.; Thompson, D.A. Conceptual Understanding of Screen Media Parenting: Report of a Working Group. Child. Obes. 2013, 9, S-110–S-118. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Colley, R.C.; Saunders, T.J.; Healy, G.N.; Owen, N. Physiological and Health Implications of a Sedentary Lifestyle. Appl. Physiol. Nutr. Metab. 2010, 35, 725–740. [Google Scholar] [CrossRef]
- Strasburger, V.C.; Jordan, A.B.; Donnerstein, E. Health Effects of Media on Children and Adolescents. Pediatrics 2010, 125, 756–767. [Google Scholar] [CrossRef]
- Hawi, N.S.; Samaha, M. Relationships among Smartphone Addiction, Anxiety, and Family Relations. Behav. Inf. Technol. 2017, 36, 1046–1052. [Google Scholar] [CrossRef]
- Al-Barashdi, H.; Bouazza, A.; Jabur, N. Smartphone Addiction among University Undergraduates: A Literature Review. J. Sci. Res. Rep. 2015, 4, 210–225. [Google Scholar] [CrossRef]
- Tang, Y.-Y.; Posner, M.I.; Rothbart, M.K.; Volkow, N.D. Circuitry of Self-Control and Its Role in Reducing Addiction. Trends Cogn. Sci. 2015, 19, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Shaw, B.; Kesharwani, A. Moderating Effect of Smartphone Addiction on Mobile Wallet Payment Adoption. J. Internet Commer. 2019, 18, 291–309. [Google Scholar] [CrossRef]
- Elhai, J.D.; Levine, J.C.; Hall, B.J. The Relationship between Anxiety Symptom Severity and Problematic Smartphone Use: A Review of the Literature and Conceptual Frameworks. J. Anxiety Disord. 2019, 62, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, J. Addictive Internet Gaming Usage among Korean Adolescents before and after the Outbreak of the COVID-19 Pandemic: A Comparison of the Latent Profiles in 2018 and 2020. Int. J. Environ. Res. Public Health 2021, 18, 7275. [Google Scholar] [CrossRef] [PubMed]
- Al-Kandari, Y.Y.; Al-Sejari, M.M. Social Isolation, Social Support and Their Relationship with Smartphone Addiction. Inf. Commun. Soc. 2020, 24, 1925–1943. [Google Scholar] [CrossRef]
- Rotondi, V.; Stanca, L.; Tomasuolo, M. Connecting Alone: Smartphone Use, Quality of Social Interactions and Well-Being. J. Econ. Psychol. 2017, 63, 17–26. [Google Scholar] [CrossRef]
- Choliz, M. Mobile-phone addiction in adolescence: The test of mobile phone dependence (TMD). Prog. Health Sci. 2012, 2, 33–44. [Google Scholar]
- Bhardwaj, M.; Ashok, S. Mobile Phone Addiction and Loneliness among Teenagers. Int. J. Indian Psychol. 2015, 2. [Google Scholar] [CrossRef]
- Meshi, D.; Ellithorpe, M. Problematic Social Media Use and Social Support Received in Real-Life versus on social media: Associations with Depression, Anxiety and Social Isolation. Addic. Behav. 2021, 119, 106949. [Google Scholar] [CrossRef]
- Siau, K.; Shen, Z. Building Customer Trust in Mobile Commerce. Commun. ACM 2003, 46, 91–94. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in Online Shopping: An Integrated Model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Baabdullah, A.M.; Rana, N.P.; Tamilmani, K.; Dwivedi, Y.K. Examining Adoption of Mobile Internet in Saudi Arabia: Extending TAM with Perceived Enjoyment, Innovativeness and Trust. Technol. Soc. 2018, 55, 100–110. [Google Scholar] [CrossRef]
- Maqableh, M.; Abuhashesh, M.; Dahabiyeh, L.; Nawayseh, M.K.A.; Masa’deh, R. The Effect of Facebook Users’ Satisfaction and Trust on Stickiness: The Role of Perceived Values. Int. J. Data Netw. Sci. 2021, 5, 245–256. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Huang, T.-Y. High Speed Rail Passengers’ Mobile Ticketing Adoption. Transp. Res. Part C: Emerg. Technol. 2013, 30, 143–160. [Google Scholar] [CrossRef]
- Park, E.; Baek, S.; Ohm, J.; Chang, H.J. Determinants of Player Acceptance of Mobile Social Network Games: An Application of Extended Technology Acceptance Model. Telemat. Inf. 2014, 31, 3–15. [Google Scholar] [CrossRef]
- Zarmpou, T.; Saprikis, V.; Markos, A.; Vlachopoulou, M. Modeling Users’ Acceptance of Mobile Services. Electron. Commer. Res. 2012, 12, 225–248. [Google Scholar] [CrossRef]
- Hanafizadeh, P.; Behboudi, M.; Abedini Koshksaray, A.; Jalilvand Shirkhani Tabar, M. Mobile-Banking Adoption by Iranian Bank Clients. Telemat. Inf. 2014, 31, 62–78. [Google Scholar] [CrossRef]
- Morgan, R.M.; Hunt, S.D. The Commitment-Trust Theory of Relationship Marketing. J. Mark. 1994, 58, 20–38. [Google Scholar] [CrossRef]
- De Wulf, K.; Odekerken-Schröder, G.; Iacobucci, D. Investments in Consumer Relationships: A Cross-Country and Cross-Industry Exploration. J. Mark. 2001, 65, 33–50. [Google Scholar] [CrossRef]
- Tiwari, P.; Tiwari, S.K.; Gupta, A. Examining the Impact of Customers’ Awareness, Risk and Trust in M-Banking Adoption. FIIB Bus. Rev. 2021, 10, 413–423. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, C.; Kizildag, M. Banking “On-The-Go”: Examining Consumers’ Adoption of Mobile Banking Services. Int. J. Int. J. Qual. Serv. Sci. 2018, 10, 279–295. [Google Scholar] [CrossRef]
- Abdus Salam, M.; Saha, T.; Habibur Rahman, M.; Mutsuddi, P. Challenges to Mobile Banking Adaptation in COVID-19 Pandemic. J. Bus. Manag. Sci. 2021, 9, 101–113. [Google Scholar] [CrossRef]
- Bruner, G.C.; Kumar, A. Explaining Consumer Acceptance of Handheld Internet Devices. J. Bus. Res. 2005, 58, 553–558. [Google Scholar] [CrossRef]
- Zhang, J.; Mao, E. Understanding the Acceptance of Mobile SMS Advertising among Young Chinese Consumers. Psychol. Mark. 2008, 25, 787–805. [Google Scholar] [CrossRef]
- FANG, X.; CHAN, S.; BRZEZINSKI, J.; XU, S. Moderating Effects of Task Type on Wireless Technology Acceptance. J. Manag. Inf. Syst. 2005, 22, 123–157. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P. Factors Influencing Adoption of Mobile Banking by Jordanian Bank Customers: Extending UTAUT2 with Trust. Int. J. Inf. Manag. 2017, 37, 99–110. [Google Scholar] [CrossRef]
- Chong, A.Y.-L. Predicting M-Commerce Adoption Determinants: A Neural Network Approach. Expert Syst. Appl. 2013, 40, 523–530. [Google Scholar] [CrossRef]
- Dai, H.; Palvi, P.C. Mobile Commerce Adoption in China and the United States. ACM SIGMIS Database 2009, 40, 43. [Google Scholar] [CrossRef]
- Yang, Q.; Gong, X. The Engagement–Addiction Dilemma: An Empirical Evaluation of Mobile User Interface and Mobile Game Affordance. Internet Res. 2021; ahead-of-print. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Camilleri, M.A. The Online Users’ Perceptions toward Electronic Government Services. J. Inf. Commun. Ethics Soc. 2019; ahead-of-print. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157. [Google Scholar] [CrossRef]
- Baabdullah, A.M. Consumer Adoption of Mobile Social Network Games (M-SNGs) in Saudi Arabia: The Role of Social Influence, Hedonic Motivation and Trust. Technol. Soc. 2018, 53, 91–102. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P.; Lal, B.; Williams, M.D. Consumer Adoption of Internet Banking in Jordan: Examining the Role of Hedonic Motivation, Habit, Self-Efficacy and Trust. J. Financ. Serv. Mark. 2015, 20, 145–157. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Rana, N.P.; Janssen, M.; Lal, B.; Williams, M.D.; Clement, M. An Empirical Validation of a Unified Model of Electronic Government Adoption (UMEGA). Gov. Inf. Q. 2017, 34, 211–230. [Google Scholar] [CrossRef]
- Kapoor, K.; Dwivedi, Y.; Piercy, N.C.; Lal, B.; Weerakkody, V. RFID Integrated Systems in Libraries: Extending TAM Model for Empirically Examining the Use. J. Enterp. Inf. Manag. 2014, 27, 731–758. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Rana, N.P.; Jeyaraj, A.; Clement, M.; Williams, M.D. Re-Examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model. Inf. Syst. Front. 2017, 21, 719–734. [Google Scholar] [CrossRef]
- Ofir Turel, Alexander Serenko and Paul Giles, Integrating Technology Addiction and Use: An Empirical Investigation of Online Auction Users. MIS Q. 2011, 35, 1043. [CrossRef]
- Cella, D.; Yount, S.; Rothrock, N.; Gershon, R.; Cook, K.; Reeve, B.; Ader, D.; Fries, J.F.; Bruce, B.; Rose, M. The Patient-Reported Outcomes Measurement Information System (PROMIS). Med. Care 2007, 45 (Suppl. S1), S3–S11. [Google Scholar] [CrossRef]
- Horzum, M.B. Examining Computer Game Addiction Level of Primary School Students in Terms of Different Variables. Educ. Sci. 2011, 36, 56–68. Available online: https://hdl.handle.net/20.500.12619/44122 (accessed on 1 July 2022).
- Anderson, S.E.; Economos, C.D.; Must, A. Active Play and Screen Time in US Children Aged 4 to 11 Years in Relation to Sociodemographic and Weight Status Characteristics: A Nationally Representative Cross-Sectional Analysis. BMC Public Health 2008, 8, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duch, H.; Fisher, E.M.; Ensari, I.; Harrington, A. Screen Time Use in Children under 3 Years Old: A Systematic Review of Correlates. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 102. [Google Scholar] [CrossRef]
- Selvi, H.; Horzum, M.B.; Üngören, Y. Investigation of High School Students’ Internet Parental Styles in Relation with Several Variables. Int. J. Psychol. Educ. Stud. 2019, 6, 51–58. [Google Scholar] [CrossRef]
- Roser, K.; Schoeni, A.; Foerster, M.; Röösli, M. Problematic Mobile Phone Use of Swiss Adolescents: Is It Linked with Mental Health or Behaviour? Int. J. Public Health 2015, 61, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Kim, J.Y.; Cho, C.B. Prevalence of Internet addiction and correlations with family factors among South Korean adolescents. Adolescence 2008, 43, 895–909. [Google Scholar]
- Aktürk, Ü.; Budak, F.; Gültekin, A.; Özdemir, A. Comparison of Smartphone Addiction and Loneliness in High School and University Students. Perspect. Psychiatr. Care 2018, 54, 564–570. [Google Scholar] [CrossRef]
- Chung, N. Korean Adolescent Girls’ Addictive Use of Mobile Phones to Maintain Interpersonal Solidarity. Soc. Behav. Pers. Int. J. 2011, 39, 1349–1358. [Google Scholar] [CrossRef]
- Ezoe, S.; Toda, M.; Yoshimura, K.; Naritomi, A.; Den, R.; Morimoto, K. Relationships of Personality and Lifestyle with Mobile Phone Dependence among Female Nursing Students. Soc. Behav. Pers. Int. J. 2009, 37, 231–238. [Google Scholar] [CrossRef]
- Gallimberti, L.; Buja, A.; Chindamo, S.; Terraneo, A.; Marini, E.; Rabensteiner, A.; Vinelli, A.; Perez, L.J.G.; Baldo, V. Problematic Cell Phone Use for Text Messaging and Substance Abuse in Early Adolescence (11- to 13-Year-Olds). Eur. J. Pediatrics 2015, 175, 355–364. [Google Scholar] [CrossRef]
- “QRF,” Curriculum and student Assessment in Jordan. 2017. Available online: https://www.qrf.org/sites/default/files/2019-05/curriculum_and_student_assessment_brief_en_condensed.pdf (accessed on 17 June 2022).
- Hill, I. The International Baccalaureate. J. Res. Int. Educ. 2002, 1, 183–211. [Google Scholar] [CrossRef]
- Njie, B.; Asimiran, S. A Review of the Philosophy of International Education in an International School Setting. IOSR J. Res. Method iEduc. (IOSR-JRME) 2018, 8, 25–32. [Google Scholar] [CrossRef]
- Yongqiang, S.; Yang, Z.; Shi-Qi, J.; Ding-Yi, Z. Understanding the Antecedents of Mobile Game Addiction: The Roles of Perceived Visibility, Perceived Enjoyment and Flow. In Proceedings of the Pacific Asia Conference on Information Systems (PACIS), Singapore, 5–9 July 2015. [Google Scholar]
- Sanz-Blas, S.; Buzova, D.; Miquel-Romero, M.J. From Instagram Overuse to Instastress and Emotional Fatigue: The Mediation of Addiction. Spanish J. Mark. —ESIC 2019, 23, 143–161. [Google Scholar] [CrossRef] [Green Version]
- Pallant, J. SPSS Survival Manual; Routledge: New York, USA, 2020. [Google Scholar] [CrossRef]
- Sekaran, U.; Bougie, R. Research Methods for Business: A Skill-Building Approach, 7th ed.; John Wiley & Sons: Chichester, UK, 2016. [Google Scholar]
- Bagozzi, R.P.; Yi, Y. On the Evaluation of Structural Equation Models. J. Acad. Mark Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 8th ed.; Cengage: Andover, UK, 2019. [Google Scholar]
- Kline, R.B. Principles, and Practice of Structural Equation Modeling, 4th ed.; The Guilford Press: New York, NY, USA; London, UK, 2016. [Google Scholar]
- Creswell, J.W. Research Design: Qualitative, Quantitative, and Mixed Methods Approach, 3rd ed.; Sage: Los Angeles, CA, USA, 2013. [Google Scholar]
- Marsh, H.W.; Hocevar, D. The Factorial Invariance of Student Evaluations of College Teaching. Am. Educ. Res. J. 1984, 21, 341–366. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Modeling Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- West, R.F.; Meserve, R.J.; Stanovich, K.E. Cognitive Sophistication Does Not Attenuate the Bias Blind Spot. J. Pers. Soc. Psychol. 2012, 103, 506–519. [Google Scholar] [CrossRef]
- Bentler, P.M.; Bonett, D.G. Significance Tests and Goodness of Fit in the Analysis of Covariance Structures. Psychol. Bull. 1980, 88, 588–606. [Google Scholar] [CrossRef]
- Schriesheim, C.A.; James, L.R.; Muliak, S.A.; Brett, J.M. Causal Analysis: Assumptions, Models, and Data. Acad. Manag. Rev. 1984, 9, 159. [Google Scholar] [CrossRef]
- Meyers, L.S.; Gamst, G.; Guarino, A.J. Applied Multivariate Research; Sage Publications: Los Angeles, CA, USA, 2005. [Google Scholar]
- MacCallum, R.C.; Browne, M.W.; Sugawara, H.M. Power Analysis and Determination of Sample Size for Covariance Structure Modeling. Psychol. Methods 1996, 1, 130–149. [Google Scholar] [CrossRef]
- Bentler, P.M. Comparative Fit Indexes in Structural Models. Psychol. Bull. 1990, 107, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Heckler, C.E. A Step-By-Step Approach to Using the SASTM System for Factor Analysis and Structural Equation Modeling. Technometrics 1996, 38, 296–297. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modeling With AMOS: Basic Concepts, Applications, and Programming, 3rd ed.; Routledge: New York, USA, 2016. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Alkhawaldeh, R.S. DGR: Gender Recognition of Human Speech Using One-Dimensional Conventional Neural Network. Sci. Program. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Alkhawaldeh, R.S.; Khawaldeh, S.; Pervaiz, U.; Alawida, M.; Alkhawaldeh, H. NIML: Non-Intrusive Machine Learning-Based Speech Quality Prediction on VoIP Networks. IET Commun. 2019, 13, 2609–2616. [Google Scholar] [CrossRef]
- Zobair, K.M.; Sanzogni, L.; Houghton, L.; Islam, Z. Forecasting Care Seekers Satisfaction with Telemedicine Using Machine Learning and Structural Equation Modeling. PLoS ONE 2021, 16, e0257300. [Google Scholar] [CrossRef]
- Wong, W.E.J.; Chan, S.P.; Yong, J.K.; Tham, Y.Y.S.; Lim, J.R.G.; Sim, M.A.; Soh, C.R.; Ti, L.K.; Chew, T.H.S. Assessment of Acute Kidney Injury Risk Using a Machine-Learning Guided Generalized Structural Equation Model: A Cohort Study. BMC Nephrol. 2021, 22, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Sawaragi, T.; Horiguchi, Y. Introduce Structural Equation Modelling to Machine Learning Problems for Building an Explainable and Persuasive Model. SICE J. Control Meas. Syst. Integr. 2021, 14, 67–79. [Google Scholar] [CrossRef]
- Basha, A.M.; Rajaiah, M.; Penchalaiah, P.; Kamal, C.R.; Rao, B.N. Machine Learning-Structural Equation Modeling Algorithm:The Moderating role of Loyalty on Customer Retention towards Online Shopping. Int. J. 2020, 8, 1578–1585. [Google Scholar]
- Elnagar, A.; Alnazzawi, N.; Afyouni, I.; Shahin, I.; Bou Nassif, A.; Salloum, S.A. Prediction of the Intention to Use a Smartwatch: A Comparative Approach Using Machine Learning and Partial Least Squares Structural Equation Modeling. Inf. Med. Unlocked 2022, 29, 100913. [Google Scholar] [CrossRef]
- Sujith, A.V.L.N.; Qureshi, N.I.; Dornadula, V.H.R.; Rath, A.; Prakash, K.B.; Singh, S.K. A Comparative Analysis of Business Machine Learning in Making Effective Financial Decisions Using Structural Equation Model (SEM). J. Food Qual. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Li, J.; Horiguchi, Y.; Sawaragi, T. Data Dimensionality Reduction by Introducing Structural Equation Modeling to Machine Learning Problems. In Proceedings of the 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) 2020, Chiang Mai, Thailand, 23–26 September 2020. [Google Scholar] [CrossRef]
- Thakur, N.; Han, C.Y. A Study of Fall Detection in Assisted Living: Identifying and Improving the Optimal Machine Learning Method. J. Sens. Actuator Netw. 2021, 10, 39. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining, Fourth Edition: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2016. [Google Scholar]
- Da Silva, I.N.; Hernane Spatti, D.; Andrade Flauzino, R.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial Neural Network Architectures and Training Processes. Artif. Neural Netw. 2016, 21–28. [Google Scholar] [CrossRef]
- Yao, W.; LI, L. A New Regression Model: Modal Linear Regression. Scand. J. Stat. 2014, 41, 656–671. [Google Scholar] [CrossRef]
- Platt, J. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines; Microsoft: Redmond, WA, USA, 1998. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Tasin, T.; Habib, M.A. Computer-Aided Cataract Detection Using Random Forest Classifier. In Proceedings of the International Conference on Big Data, IoT, and Machine Learning, Sydney, NSW, Australia, 22–23 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 27–38. [Google Scholar]
Respondent Education (Parent) | Female | Male | Grand Total | |||
---|---|---|---|---|---|---|
High school/less than high school | 7 | (1%) | 4 | (1%) | 11 | (2%) |
Diploma | 23 | (5%) | 95 | (19%) | 118 | (23%) |
B.Sc. | 82 | (16%) | 185 | (36%) | 267 | (52%) |
Master | 21 | (4%) | 44 | (9%) | 65 | (13%) |
Ph.D. | 11 | (2%) | 39 | (8%) | 50 | (10%) |
Grand Total | 144 | (28%) | 367 | (72%) | 511 | (100%) |
Respondent Age (Parent) | ||||||
18–28 years | 8 | (2%) | 8 | (2%) | 16 | (3%) |
28–38 years | 55 | (11%) | 161 | (32%) | 216 | (42%) |
38–48 years | 57 | (11%) | 157 | (31%) | 214 | (42%) |
48–58 years | 20 | (4%) | 35 | (7%) | 55 | (11%) |
Greater than 58 years | 4 | (1%) | 6 | (1%) | 10 | (2%) |
Grand Total | 144 | (28%) | 367 | (72%) | 511 | (100%) |
Respondent Marital Status (Parent) | ||||||
Divorced | 7 | (1%) | 5 | (1%) | 12 | (2%) |
Married | 135 | (26%) | 360 | (70%) | 495 | (97%) |
Widow | 2 | (0%) | 2 | (0%) | 4 | (1%) |
Grand Total | 144 | (28%) | 367 | (72%) | 511 | (100%) |
Child Age | ||||||
0–3 years | 41 | (8%) | 17 | (3%) | 58 | (11%) |
3–6 years | 110 | (22%) | 53 | (10%) | 163 | (32%) |
6–9 years | 66 | (13%) | 35 | (7%) | 101 | (20%) |
9–12 years | 57 | (11%) | 32 | (6%) | 89 | (17%) |
12–15 years | 42 | (8%) | 26 | (5%) | 68 | (13%) |
15–17 years | 21 | (4%) | 11 | (2%) | 32 | (6%) |
Grand Total | 337 | (66%) | 174 | (34%) | 511 | (100%) |
Internet Experience (Child) | ||||||
Excellent | 116 | (23%) | 69 | (14%) | 185 | (36%) |
Good | 169 | (33%) | 76 | (15%) | 245 | (48%) |
Low | 52 | (10%) | 29 | (6%) | 81 | (16%) |
Grand Total | 337 | (66%) | 174 | (34%) | 511 | (100%) |
Kids # in Family | ||||||
1 child | 59 | (12%) | 26 | (5%) | 85 | (17%) |
2 children | 125 | (24%) | 59 | (12%) | 184 | (36%) |
3 children | 80 | (16%) | 52 | (10%) | 132 | (26%) |
4 children | 47 | (9%) | 23 | (5%) | 70 | (14%) |
5 or more | 26 | (5%) | 14 | (3%) | 40 | (8%) |
Grand Total | 337 | (66%) | 174 | (34%) | 511 | (100%) |
Internet h Use (Child) | ||||||
1 h | 61 | (12%) | 35 | (7%) | 96 | (19%) |
2 h | 69 | (14%) | 39 | (8%) | 108 | (21%) |
3 h | 71 | (14%) | 37 | (7%) | 108 | (21%) |
4 h | 55 | (11%) | 25 | (5%) | 80 | (16%) |
5 h or more | 81 | (16%) | 38 | (7%) | 119 | (23%) |
Grand Total | 337 | (66%) | 174 | (34%) | 511 | (100%) |
School Type (Child) | ||||||
Government | 221 | (43%) | 129 | (25%) | 350 | (69%) |
Not in school | 64 | (13%) | 20 | (4%) | 84 | (16%) |
Nursery | 14 | (3%) | 10 | (2%) | 24 | (5%) |
Preschool | 34 | (7%) | 10 | (2%) | 44 | (9%) |
UNRWA | 4 | (1%) | 5 | (1%) | 9 | (2%) |
Grand Total | 337 | (66%) | 174 | (34%) | 511 | (100%) |
Social Network (Child) | ||||||
8 | (2%) | 3 | (1%) | 11 | (2%) | |
Games | 83 | (16%) | 47 | (9%) | 130 | (25%) |
10 | (2%) | 6 | (1%) | 16 | (3%) | |
1 | (0%) | 1 | (0%) | 2 | (0%) | |
Others | 4 | (1%) | 5 | (1%) | 9 | (2%) |
Snapchat | 4 | (1%) | 5 | (1%) | 9 | (2%) |
TikTok | 22 | (4%) | 7 | (1%) | 29 | (6%) |
1 | (0%) | 1 | (0%) | 2 | (0%) | |
YouTube Kids | 204 | (40%) | 99 | (19%) | 303 | (59%) |
Grand Total | 337 | (66%) | 174 | (34%) | 511 | (100%) |
Range | Level |
---|---|
1–1.80 | very low |
1.81–2.60 | low |
2.61–3.40 | moderate |
3.41–4.20 | high |
4.21–5 | very high |
Type of Variable | Variables | Mean | SD | Level | Order |
---|---|---|---|---|---|
Independent Variables | PU | 3.204501 | 0.838535 | High | 4 |
PEoU | 4.247065 | 0.570725 | Very High | 2 | |
TR | 2.243836 | 0.867335 | Low | 8 | |
EN | 4.322244 | 0.682242 | Very High | 1 | |
SI | 2.791911 | 0.888545 | High | 6 | |
Mediating Variables | BI | 3.093933 | 0.750152 | High | 5 |
SPA | 3.293107 | 0.980493 | High | 3 | |
Dependent Variable | SocIso | 2.736986 | 1.127352 | High | 7 |
Mean | SD | S.E. | Level | Order | Cronbach | Internal Consistency | |
---|---|---|---|---|---|---|---|
Perceived Usefulness (PU) | 0.046135 | 0.89877 | Good | ||||
PU1 | 2.851272 | 1.0429 | 0.048561 | high | 6 | ||
PU2 | 2.970646 | 1.097734 | 0.045564 | high | 5 | ||
PU3 | 3.197652 | 1.029979 | 0.044216 | high | 4 | ||
PU4 | 3.389432 | 0.999513 | 0.043701 | high | 2 | ||
PU5 | 3.508806 | 0.987878 | 0.044804 | high | 1 | ||
PU6 | 3.309198 | 1.012807 | 0.037095 | high | 3 | ||
Perceived Ease of Use (PEoU) | 0.02792 | 0.860033 | Good | ||||
PEoU1 | 4.309198 | 0.631132 | 0.03349 | very high | 2 | ||
PEoU2 | 4.105675 | 0.75705 | 0.028884 | high | 4 | ||
PEoU3 | 4.25636 | 0.652922 | 0.029749 | very high | 3 | ||
PEoU4 | 4.317025 | 0.672487 | 0.025247 | very high | 1 | ||
Trust (TR) | 0.041895 | 0.907275 | Excellent | ||||
TR1 | 2.25636 | 0.947046 | 0.042012 | low | 3 | ||
TR2 | 2.293542 | 0.949684 | 0.04658 | low | 1 | ||
TR3 | 2.219178 | 1.052962 | 0.046993 | low | 4 | ||
TR4 | 2.168297 | 1.062301 | 0.046826 | low | 5 | ||
TR5 | 2.2818 | 1.058505 | 0.038369 | low | 2 | ||
Perceived Enjoyment (EN) | 0.032961 | 0.943947 | Excellent | ||||
EN1 | 4.289628 | 0.745095 | 0.031328 | very high | 3 | ||
EN2 | 4.334638 | 0.708183 | 0.031162 | very high | 2 | ||
EN3 | 4.341176 | 0.72955 | 0.030181 | very high | 1 | ||
Social Influence (SI) | 0.043723 | 0.850824 | Good | ||||
SI1 | 2.868885 | 0.988379 | 0.043142 | high | 2 | ||
SI2 | 2.614481 | 0.975235 | 0.047382 | high | 3 | ||
SI3 | 2.892368 | 1.071082 | 0.039307 | high | 1 | ||
Behavioral Intention (BI) | 0.046356 | 0.670738 | Questionable * | ||||
BI1 | 3.076321 | 1.047896 | 0.04723 | high | 2 | ||
BI2 | 3.735812 | 1.067648 | 0.04573 | high | 1 | ||
BI3 | 2.998043 | 1.033743 | 0.047804 | high | 3 | ||
BI4 | 2.565558 | 1.080626 | 0.033185 | low | 4 | ||
Smartphones Addiction (SPA) | 0.048888 | 0.926171 | Excellent | ||||
SPA1 | 3.921722 | 1.10513 | 0.056677 | high | 1 | ||
SPA2 | 3.309198 | 1.281196 | 0.055068 | high | 3 | ||
SPA3 | 3.037182 | 1.244827 | 0.054364 | high | 9 | ||
SPA4 | 3.131115 | 1.228913 | 0.054317 | high | 8 | ||
SPA5 | 3.217221 | 1.227854 | 0.054334 | high | 5 | ||
SPA6 | 3.344423 | 1.228247 | 0.055917 | high | 2 | ||
SPA7 | 3.172211 | 1.264016 | 0.056826 | high | 7 | ||
SPA8 | 3.291585 | 1.284564 | 0.055535 | high | 4 | ||
SPA9 | 3.213307 | 1.25538 | 0.043374 | high | 6 | ||
Social Isolation (SocIso) | 0.053553 | 0.971353 | Excellent | ||||
SocIso1 | 2.849315 | 1.210572 | 0.051218 | high | 1 | ||
SocIso2 | 2.726027 | 1.15779 | 0.053225 | high | 3 | ||
SocIso3 | 2.731898 | 1.203158 | 0.052038 | high | 2 | ||
SocIso4 | 2.677104 | 1.176337 | 0.053186 | high | 5 | ||
SocIso5 | 2.700587 | 1.202277 | 0.049871 | high | 4 |
Factor loadings | S.E. | C.R. | P | Squared Multiple Correlations | CR | AVE | |
---|---|---|---|---|---|---|---|
Perceived Usefulness (PU) | 0.895 | 0.590 | |||||
PU1 | 0.735 | 0.062 | 16.51 | *** | 0.54 | ||
PU2 | 0.651 | 0.066 | 14.474 | *** | 0.423 | ||
PU3 | 0.842 | 0.061 | 19.046 | *** | 0.708 | ||
PU4 | 0.798 | 0.043 | 24.686 | *** | 0.637 | ||
PU5 | 0.76 | 0.577 | |||||
PU6 | 0.807 | 0.052 | 21.11 | *** | 0.652 | ||
Perceived Ease of Use (PEoU) | 0.866 | 0.620 | |||||
PEU2 | 0.675 | 0.056 | 16.154 | *** | 0.456 | ||
PEU3 | 0.842 | 0.046 | 21.205 | *** | 0.709 | ||
PEU4 | 0.84 | 0.609 | |||||
Trust (TR) | 0.902 | 0.650 | |||||
TR1 | 0.73 | 0.04 | 18.809 | *** | 0.532 | ||
TR2 | 0.751 | 0.04 | 19.643 | *** | 0.565 | ||
TR3 | 0.846 | 0.042 | 23.581 | *** | 0.716 | ||
TR4 | 0.836 | 0.042 | 23.145 | *** | 0.699 | ||
TR5 | 0.858 | 0.736 | |||||
Perceived Enjoyment (EN) | 0.948 | 0.859 | |||||
EN1 | 0.825 | 0.029 | 30.568 | *** | 0.68 | ||
EN2 | 0.97 | 0.017 | 57.624 | *** | 0.942 | ||
EN3 | 0.978 | 0.956 | |||||
Social Influence (SI) | 0.855 | 0.664 | |||||
SI1 | 0.823 | 0.062 | 17.093 | *** | 0.678 | ||
SI2 | 0.892 | 0.065 | 17.483 | 0.795 | |||
SI3 | 0.719 | 0.517 | |||||
Behavioral Intention (BI) | 0.751 | 0.507 | |||||
BI1 | 0.555 | 0.058 | 11.63 | *** | 0.308 | ||
BI3 | 0.756 | 0.058 | 15.556 | *** | 0.572 | ||
BI4 | 0.798 | 0.638 | |||||
Smartphones Addiction (SPA) | 0.923 | 0.576 | |||||
SPA1 | 0.582 | 0.07 | 11.571 | *** | 0.339 | ||
SPA2 | 0.74 | 0.086 | 13.901 | *** | 0.548 | ||
SPA3 | 0.831 | 0.087 | 15.023 | *** | 0.691 | ||
SPA4 | 0.755 | 0.083 | 14.147 | *** | 0.569 | ||
SPA5 | 0.886 | 0.087 | 15.801 | *** | 0.785 | ||
SPA6 | 0.893 | 0.088 | 15.809 | *** | 0.798 | ||
SPA7 | 0.773 | 0.086 | 14.392 | *** | 0.597 | ||
SPA8 | 0.615 | 0.378 | |||||
SPA9 | 0.692 | 0.061 | 18.047 | *** | 0.479 | ||
Social Isolation (SocIso) | 0.969 | 0.863 | |||||
SocIso1 | 0.877 | 0.769 | |||||
SocIso2 | 0.867 | 0.025 | 38.381 | *** | 0.752 | ||
SocIso3 | 0.953 | 0.031 | 35.21 | *** | 0.909 | ||
SocIso4 | 0.968 | 0.029 | 36.745 | *** | 0.938 | ||
SocIso5 | 0.972 | 0.03 | 37.159 | *** | 0.945 |
Fit Indices | Authors | Recommended Value | Proposed Model Value |
---|---|---|---|
Chi square | [87] | p-value > 0.5 | p = 0.000, CMIN = 1184, DF = 629 |
Chi-square Value/Degree of Freedom (CMIN/DF) | [80,82] | <5.0 better if <3.0 <5.0 if n > 200 <3.0 good <5.0 sometimes permissible | 1.910 |
[89] | |||
[79] | |||
Comparative Fit Index (CFI) | [89] | >0.90 | 0.964 |
[90] | |||
Incremental Fit Index (IFI) | [87] | >0.90 | 0.964 |
Normed Fit Index (NFI) | [85] | >0.90 | 0.927 |
Parsimony Comparative Fix Index (PCFI) | [87] | >0.50 | 0.863 |
Parsimony-Adjusted Measures Index (PNFI) | [87] | >0.5 | 0.830 |
Root Mean Square Error of Approximation (RMSEA) | [91] | <0.08 <0.05 <0.08: good fit 0.08–0.1: moderate fit >0.1: poor fit | 0.042 and is between 0.039 and 0.046 |
[83] | |||
[87] | |||
Standardized Root Mean Square Residual (SRMR) | [79] | <0.09 | 0.0629 |
Constructs | CR | AVE | MSV | MaxR(H) |
---|---|---|---|---|
Perceived Usefulness (PU) | 0.895 | 0.590 | 0.461 | 0.903 |
Perceived Ease of Use (PEoU) | 0.866 | 0.620 | 0.228 | 0.878 |
Trust (TR) | 0.902 | 0.650 | 0.355 | 0.910 |
Perceived Enjoyment (EN) | 0.948 | 0.859 | 0.228 | 0.976 |
Social Influence (SI) | 0.855 | 0.664 | 0.185 | 0.873 |
Behavioral Intention (BI) | 0.751 | 0.507 | 0.461 | 0.781 |
Smartphone Addiction (SPA) | 0.923 | 0.576 | 0.500 | 0.941 |
Social Isolation (SocIso) | 0.969 | 0.863 | 0.500 | 0.980 |
PU | PEoU | TR | EN | SI | BI | SPA | SocIso | |
---|---|---|---|---|---|---|---|---|
PU | 0.768 | |||||||
PEoU | 0.187 *** | 0.787 | ||||||
TR | 0.517 *** | 0.075 | 0.806 | |||||
EN | 0.126 ** | 0.478 *** | 0.054 | 0.927 | ||||
SI | 0.240 *** | 0.136 ** | 0.430 *** | 0.109 * | 0.815 | |||
BI | 0.679 *** | 0.136 * | 0.596 *** | 0.110 * | 0.410 *** | 0.712 | ||
SPA | −0.286 *** | 0.062 | −0.099 * | 0.045 | −0.014 | −0.259 *** | 0.759 | |
SocIso | −0.239 *** | 0.014 | −0.075 | −0.011 | 0.096 * | −0.174 *** | 0.707 *** | 0.929 |
PU | PEoU | TR | EN | SI | BI | SPA | SocIso | |
---|---|---|---|---|---|---|---|---|
PU | ||||||||
PEoU | 0.210 | |||||||
TR | 0.533 | 0.110 | ||||||
EN | 0.131 | 0.500 | 0.031 | |||||
SI | 0.219 | 0.159 | 0.415 | 0.125 | ||||
BI | 0.670 | 0.145 | 0.606 | 0.124 | 0.372 | |||
SPA | 0.252 | 0.071 | 0.071 | 0.095 | 0.008 | 0.225 | ||
SocIso | 0.235 | 0.005 | 0.061 | 0.009 | 0.107 | 0.156 | 0.698 |
Research Proposed Paths | Estimate | S.E. | C.R. | P | Label |
---|---|---|---|---|---|
H1: PU→BI | 0.519 | 0.065 | 9.213 | 0.000 | Supported |
H2: PEOU→BI | −0.016 | 0.074 | −0.341 | 0.733 | Not Supported |
H3: TR→BI | 0.172 | 0.054 | 3.592 | 0.000 | Supported |
H4: EN→BI | 0.016 | 0.057 | 0.343 | 0.732 | Not Supported |
H5: SI→BI | 0.25 | 0.052 | 4.578 | 0.000 | Supported |
H6:BI→SPA | −0.268 | 0.048 | −5.142 | 0.000 | Supported |
H7: SPA→SocIso | 0.707 | 0.075 | 12.754 | 0.000 | Supported |
Group Statistics | ||||||
---|---|---|---|---|---|---|
Child Gender | Gender | N | Mean | Std. Deviation | Std. Error Mean | |
SPA | Male | 174 | 0.0084 | 0.77935 | 0.05908 | |
Female | 337 | −0.0044 | 0.76615 | 0.04173 | ||
BI | Male | 174 | −0.0048 | 0.78059 | 0.05918 | |
Female | 337 | 0.0025 | 0.78924 | 0.04299 | ||
SocIso | Male | 174 | −0.0059 | 1.03543 | 0.0785 | |
Female | 337 | 0.003 | 1.06022 | 0.05775 | ||
Responders’ Gender | SPA | Male | 367 | 0.0074 | 0.77361 | 0.04038 |
Female | 144 | −0.0188 | 0.76283 | 0.06357 | ||
BI | Male | 367 | 0.0305 | 0.80204 | 0.04187 | |
Female | 144 | −0.0776 | 0.73885 | 0.06157 | ||
SocIso | Male | 367 | −0.0085 | 1.03608 | 0.05408 | |
Female | 144 | 0.0217 | 1.09094 | 0.09091 |
Independent Samples Test | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Levene’s Test for Equality of Variances | t-Test for Equality of Means | ||||||||||
F | Sig. | t | df | Sig. (2-Tailed) | Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference | ||||
Lower | Upper | ||||||||||
Child Gender | SPA | Equal variances assumed | 0.066 | 0.798 | 0.178 | 509 | 0.859 | 0.01279 | 0.07194 | −0.12855 | 0.15413 |
Equal variances not assumed | 0.177 | 344.551 | 0.86 | 0.01279 | 0.07234 | −0.12949 | 0.15506 | ||||
BI | Equal variances assumed | 0.303 | 0.583 | −0.099 | 509 | 0.922 | −0.00723 | 0.0734 | −0.15144 | 0.13698 | |
Equal variances not assumed | −0.099 | 353.166 | 0.921 | −0.00723 | 0.07314 | −0.15109 | 0.13662 | ||||
SocIso | Equal variances assumed | 0.149 | 0.7 | −0.09 | 509 | 0.928 | −0.00888 | 0.09819 | −0.20179 | 0.18404 | |
Equal variances not assumed | −0.091 | 357.12 | 0.927 | −0.00888 | 0.09745 | −0.20053 | 0.18278 | ||||
Responders’ Gender | SPA | Equal variances assumed | 0.003 | 0.953 | 0.345 | 509 | 0.73 | 0.02617 | 0.07577 | −0.1227 | 0.17503 |
Equal variances not assumed | 0.347 | 264.849 | 0.729 | 0.02617 | 0.07531 | −0.12212 | 0.17445 | ||||
BI | Equal variances assumed | 1.568 | 0.211 | 1.401 | 509 | 0.162 | 0.10811 | 0.07717 | −0.04351 | 0.25972 | |
Equal variances not assumed | 1.452 | 282.228 | 0.148 | 0.10811 | 0.07446 | −0.03845 | 0.25467 | ||||
SocIso | Equal variances assumed | 0.924 | 0.337 | −0.292 | 509 | 0.771 | −0.03018 | 0.10342 | −0.23337 | 0.17301 | |
Equal variances not assumed | −0.285 | 249.896 | 0.776 | −0.03018 | 0.10578 | −0.23852 | 0.17816 |
Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
BI attributed to respondents age | Between Groups | 7.343 | 4 | 1.836 | 3.022 | 0.018 |
Within Groups | 307.366 | 506 | 0.607 | |||
Total | 314.709 | 510 | ||||
BI attributed to child age | Between Groups | 13.664 | 5 | 2.733 | 4.584 | 0 |
Within Groups | 301.045 | 505 | 0.596 | |||
Total | 314.709 | 510 | ||||
BI attributed to Internet experience | Between Groups | 10.434 | 2 | 5.217 | 8.71 | 0 |
Within Groups | 304.275 | 508 | 0.599 | |||
Total | 314.709 | 510 | ||||
SocIso attributed to number of children in family | Between Groups | 15.549 | 4 | 3.887 | 3.592 | 0.007 |
Within Groups | 547.624 | 506 | 1.082 | |||
Total | 563.173 | 510 | ||||
BI attributed to hours spent on smartphone | Between Groups | 6.084 | 4 | 1.521 | 2.494 | 0.042 |
Within Groups | 308.624 | 506 | 0.61 | |||
Total | 314.709 | 510 | ||||
SPA attributed to hours spent on smartphone | Between Groups | 34.229 | 4 | 8.557 | 16.151 | 0 |
Within Groups | 268.094 | 506 | 0.53 | |||
Total | 302.324 | 510 | ||||
SocIso attributed to hours spent on smartphone | Between Groups | 18.547 | 4 | 4.637 | 4.308 | 0.002 |
Within Groups | 544.626 | 506 | 1.076 | |||
Total | 563.173 | 510 |
Dependent Variable | (I) Responder Age (Years) | (J) Responder Age (Years) | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
BI attributed to respondents age | 18–28 | 28–38 | 0.08693 | 0.20193 | 0.993 | −0.4659 | 0.6398 |
38–48 | 0.08499 | 0.20200 | 0.993 | −0.4680 | 0.6380 | ||
48–58 | −0.29606 | 0.22138 | 0.668 | −0.9021 | 0.3100 | ||
greater than 58 | −0.10067 | 0.31418 | 0.998 | −0.9608 | 0.7594 | ||
28–38 | 18–28 | −0.08693 | 0.20193 | 0.993 | −0.6398 | 0.4659 | |
38–48 | −0.00194 | 0.07517 | 1.000 | −0.2077 | 0.2039 | ||
48–58 | −0.38299 * | 0.11771 | 0.011 | −0.7053 | −0.0607 | ||
greater than 58 | −0.18759 | 0.25210 | 0.946 | −0.8778 | 0.5026 | ||
38–48 | 18–28 | −0.08499 | 0.20200 | 0.993 | −0.6380 | 0.4680 | |
28–38 | 0.00194 | 0.07517 | 1.000 | −0.2039 | 0.2077 | ||
48–58 | −0.38105 * | 0.11783 | 0.011 | −0.7036 | −0.0585 | ||
greater than 58 | −0.18565 | 0.25216 | 0.948 | −0.8760 | 0.5047 | ||
48–58 | 18–28 | 0.29606 | 0.22138 | 0.668 | −0.3100 | 0.9021 | |
28–38 | 0.38299 * | 0.11771 | 0.011 | 0.0607 | 0.7053 | ||
38–48 | 0.38105 * | 0.11783 | 0.011 | 0.0585 | 0.7036 | ||
greater than 58 | 0.19540 | 0.26793 | 0.950 | −0.5381 | 0.9289 | ||
greater than 58 | 18–28 | 0.10067 | 0.31418 | 0.998 | −0.7594 | 0.9608 | |
28–38 | 0.18759 | 0.25210 | 0.946 | −0.5026 | 0.8778 | ||
38–48 | 0.18565 | 0.25216 | 0.948 | −0.5047 | 0.8760 | ||
48–58 | −0.19540 | 0.26793 | 0.950 | −0.9289 | 0.5381 |
Dependent Variable | (I) Child Age (Years) | (J) Child Age (Years) | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
BI | 0–3 | 3–6 | 0.00628 | 0.11805 | 1.000 | −0.3314 | 0.3440 |
6–9 | −0.10079 | 0.12720 | 0.969 | −0.4647 | 0.2631 | ||
9–12 | −0.20523 | 0.13029 | 0.615 | −0.5780 | 0.1675 | ||
12–15 | −0.23493 | 0.13800 | 0.531 | −0.6297 | 0.1598 | ||
15–17 | −0.64023 * | 0.17002 | 0.003 | −1.1266 | −0.1539 | ||
3–6 | 0–3 | −0.00628 | 0.11805 | 1.000 | −0.3440 | 0.3314 | |
6–9 | −0.10707 | 0.09777 | 0.883 | −0.3868 | 0.1726 | ||
9–12 | −0.21151 | 0.10176 | 0.300 | −0.5026 | 0.0796 | ||
12–15 | −0.24121 | 0.11146 | 0.257 | −0.5601 | 0.0776 | ||
15–17 | −0.64651 * | 0.14929 | 0.000 | −1.0736 | −0.2195 | ||
6–9 | 0–3 | 0.10079 | 0.12720 | 0.969 | −0.2631 | 0.4647 | |
3–6 | 0.10707 | 0.09777 | 0.883 | −0.1726 | 0.3868 | ||
9–12 | −0.10444 | 0.11225 | 0.939 | −0.4256 | 0.2167 | ||
12–15 | −0.13414 | 0.12112 | 0.878 | −0.4806 | 0.2123 | ||
15–17 | −0.53944 * | 0.15662 | 0.008 | −0.9875 | −0.0914 | ||
9–12 | 0–3 | 0.20523 | 0.13029 | 0.615 | −0.1675 | 0.5780 | |
3–6 | 0.21151 | 0.10176 | 0.300 | −0.0796 | 0.5026 | ||
6–9 | 0.10444 | 0.11225 | 0.939 | −0.2167 | 0.4256 | ||
12–15 | −0.02970 | 0.12436 | 1.000 | −0.3854 | 0.3260 | ||
15–17 | −0.43500 | 0.15914 | 0.071 | −0.8903 | 0.0203 | ||
12–15 | 0–3 | 0.23493 | 0.13800 | 0.531 | −0.1598 | 0.6297 | |
3–6 | 0.24121 | 0.11146 | 0.257 | −0.0776 | 0.5601 | ||
6–9 | 0.13414 | 0.12112 | 0.878 | −0.2123 | 0.4806 | ||
9–12 | 0.02970 | 0.12436 | 1.000 | −0.3260 | 0.3854 | ||
15–17 | −0.40530 | 0.16552 | 0.142 | −0.8788 | 0.0682 | ||
15–17 | 0–3 | 0.64023 * | 0.17002 | 0.003 | 0.1539 | 1.1266 | |
3–6 | 0.64651 * | 0.14929 | 0.000 | 0.2195 | 1.0736 | ||
6–9 | 0.53944 * | 0.15662 | 0.008 | 0.0914 | 0.9875 | ||
9–12 | 0.43500 | 0.15914 | 0.071 | −0.0203 | 0.8903 | ||
12–15 | 0.40530 | 0.16552 | 0.142 | −0.0682 | 0.8788 |
Dependent Variable | (I) Internet Exp | (J) Internet Exp | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
BI | Low | Good | −0.14842 | 0.09919 | 0.294 | −0.3816 | 0.0847 |
Excellent | −0.38911 * | 0.10311 | 0.001 | −0.6315 | −0.1467 | ||
Good | Low | 0.14842 | 0.09919 | 0.294 | −0.0847 | 0.3816 | |
Excellent | −0.24069 * | 0.07538 | 0.004 | −0.4179 | −0.0635 | ||
Excellent | Low | 0.38911 * | 0.10311 | 0.001 | 0.1467 | 0.6315 | |
Good | 0.24069 * | 0.07538 | 0.004 | 0.0635 | 0.4179 |
Dependent Variable | (I) Number of Children | (J) Number of Children | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
SocIso | 1 | 2 | 0.32438 | 0.13643 | 0.123 | −0.0491 | 0.6979 |
3 | 0.28950 | 0.14468 | 0.267 | −0.1066 | 0.6856 | ||
4 | −0.14367 | 0.16791 | 0.913 | −0.6033 | 0.3160 | ||
5 or more | 0.14492 | 0.19947 | 0.950 | −0.4012 | 0.6910 | ||
2 | 1 | −0.32438 | 0.13643 | 0.123 | −0.6979 | 0.0491 | |
3 | −0.03488 | 0.11866 | 0.998 | −0.3597 | 0.2900 | ||
4 | −0.46804 * | 0.14609 | 0.013 | −0.8680 | −0.0681 | ||
5 or more | −0.17946 | 0.18149 | 0.860 | −0.6763 | 0.3174 | ||
3 | 1 | −0.28950 | 0.14468 | 0.267 | −0.6856 | 0.1066 | |
2 | 0.03488 | 0.11866 | 0.998 | −0.2900 | 0.3597 | ||
4 | −0.43317 * | 0.15382 | 0.040 | −0.8543 | −0.0121 | ||
5 or more | −0.14458 | 0.18776 | 0.939 | −0.6586 | 0.3694 | ||
4 | 1 | 0.14367 | 0.16791 | 0.913 | −0.3160 | 0.6033 | |
2 | 0.46804 * | 0.14609 | 0.013 | 0.0681 | 0.8680 | ||
3 | 0.43317 * | 0.15382 | 0.040 | 0.0121 | 0.8543 | ||
5 or more | 0.28858 | 0.20620 | 0.628 | −0.2759 | 0.8531 | ||
5 or more | 1 | −0.14492 | 0.19947 | 0.950 | −0.6910 | 0.4012 | |
2 | 0.17946 | 0.18149 | 0.860 | −0.3174 | 0.6763 | ||
3 | 0.14458 | 0.18776 | 0.939 | −0.3694 | 0.6586 | ||
4 | −0.28858 | 0.20620 | 0.628 | −0.8531 | 0.2759 |
Dependent Variable | (I) Hours on Phone | (J) Hours on Phone | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
BI | 1 h | 2 h | −0.11008 | 0.10955 | 0.853 | −0.4100 | 0.1898 |
3 h | −0.30380 * | 0.10955 | 0.045 | −0.6037 | −0.0039 | ||
4 h | −0.27747 | 0.11823 | 0.132 | −0.6011 | 0.0462 | ||
5 h or more | −0.14397 | 0.10714 | 0.664 | −0.4373 | 0.1493 | ||
2 h | 1 h | 0.11008 | 0.10955 | 0.853 | −0.1898 | 0.4100 | |
3 h | −0.19371 | 0.10628 | 0.362 | −0.4847 | 0.0972 | ||
4 h | −0.16739 | 0.11520 | 0.594 | −0.4828 | 0.1480 | ||
5 h or more | −0.03388 | 0.10379 | 0.998 | −0.3180 | 0.2503 | ||
3 h | 1 h | 0.30380 * | 0.10955 | 0.045 | 0.0039 | 0.6037 | |
2 h | 0.19371 | 0.10628 | 0.362 | −0.0972 | 0.4847 | ||
4 h | 0.02633 | 0.11520 | 0.999 | −0.2891 | 0.3417 | ||
5 h or more | 0.15983 | 0.10379 | 0.537 | −0.1243 | 0.4440 | ||
4 h | 1 h | 0.27747 | 0.11823 | 0.132 | −0.0462 | 0.6011 | |
2 h | 0.16739 | 0.11520 | 0.594 | −0.1480 | 0.4828 | ||
3 h | −0.02633 | 0.11520 | 0.999 | −0.3417 | 0.2891 | ||
5 h or more | 0.13351 | 0.11291 | 0.762 | −0.1756 | 0.4426 | ||
5 h or more | 1 h | 0.14397 | 0.10714 | 0.664 | −0.1493 | 0.4373 | |
2 h | 0.03388 | 0.10379 | 0.998 | −0.2503 | 0.3180 | ||
3 h | −0.15983 | 0.10379 | 0.537 | −0.4440 | 0.1243 | ||
4 h | −0.13351 | 0.11291 | 0.762 | −0.4426 | 0.1756 |
Dependent Variable | (I) Hours on Phone | (J) Hours on Phone | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
SPA | 1 h | 2 h | −0.05714 | 0.10210 | 0.981 | −0.3367 | 0.2224 |
3 h | −0.19399 | 0.10210 | 0.319 | −0.4735 | 0.0855 | ||
4 h | −0.46644 * | 0.11019 | 0.000 | −0.7681 | −0.1648 | ||
5 h or more | −0.66632 * | 0.09986 | 0.000 | −0.9397 | −0.3929 | ||
2 h | 1 h | 0.05714 | 0.10210 | 0.981 | −0.2224 | 0.3367 | |
3 h | −0.13685 | 0.09905 | 0.640 | −0.4080 | 0.1343 | ||
4 h | −0.40930 * | 0.10737 | 0.001 | −0.7032 | −0.1154 | ||
5 h or more | −0.60918 * | 0.09674 | 0.000 | −0.8740 | −0.3443 | ||
3 h | 1 h | 0.19399 | 0.10210 | 0.319 | −0.0855 | 0.4735 | |
2 h | 0.13685 | 0.09905 | 0.640 | −0.1343 | 0.4080 | ||
4 h | −0.27245 | 0.10737 | 0.084 | −0.5664 | 0.0215 | ||
5 h or more | −0.47233 * | 0.09674 | 0.000 | −0.7372 | −0.2075 | ||
4 h | 1 h | 0.46644 * | 0.11019 | 0.000 | 0.1648 | 0.7681 | |
2 h | 0.40930 * | 0.10737 | 0.001 | 0.1154 | 0.7032 | ||
3 h | 0.27245 | 0.10737 | 0.084 | −0.0215 | 0.5664 | ||
5 h or more | −0.19988 | 0.10524 | 0.319 | −0.4880 | 0.0882 | ||
5 h or more | 1 h | 0.66632 * | 0.09986 | 0.000 | 0.3929 | 0.9397 | |
2 h | 0.60918 * | 0.09674 | 0.000 | 0.3443 | 0.8740 | ||
3 h | 0.47233 * | 0.09674 | 0.000 | 0.2075 | 0.7372 | ||
4 h | 0.19988 | 0.10524 | 0.319 | −0.0882 | 0.4880 |
Dependent Variable | (I) Hours on Phone | (J) Hours on Phone | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
SocIso | 1 h | 2 h | 0.21410 | 0.14553 | 0.582 | −0.1843 | 0.6125 |
3 h | 0.05756 | 0.14553 | 0.995 | −0.3408 | 0.4560 | ||
4 h | −0.09326 | 0.15705 | 0.976 | −0.5232 | 0.3367 | ||
5 h or more | −0.33248 | 0.14233 | 0.135 | −0.7221 | 0.0572 | ||
2 h | 1 h | −0.21410 | 0.14553 | 0.582 | −0.6125 | 0.1843 | |
3 h | −0.15654 | 0.14118 | 0.802 | −0.5430 | 0.2300 | ||
4 h | −0.30736 | 0.15304 | 0.263 | −0.7263 | 0.1116 | ||
5 h or more | −0.54659 * | 0.13788 | 0.001 | −0.9241 | −0.1691 | ||
3 h | 1 h | −0.05756 | 0.14553 | 0.995 | −0.4560 | 0.3408 | |
2 h | 0.15654 | 0.14118 | 0.802 | −0.2300 | 0.5430 | ||
4 h | −0.15083 | 0.15304 | 0.862 | −0.5698 | 0.2681 | ||
5 h or more | −0.39005 * | 0.13788 | 0.039 | −0.7675 | −0.0126 | ||
4 h | 1 h | 0.09326 | 0.15705 | 0.976 | −0.3367 | 0.5232 | |
2 h | 0.30736 | 0.15304 | 0.263 | −0.1116 | 0.7263 | ||
3 h | 0.15083 | 0.15304 | 0.862 | −0.2681 | 0.5698 | ||
5 h or more | −0.23922 | 0.15000 | 0.501 | −0.6499 | 0.1714 | ||
5 h or more | 1 h | 0.33248 | 0.14233 | 0.135 | −0.0572 | 0.7221 | |
2 h | 0.54659 * | 0.13788 | 0.001 | 0.1691 | 0.9241 | ||
3 h | 0.39005 * | 0.13788 | 0.039 | 0.0126 | 0.7675 | ||
4 h | 0.23922 | 0.15000 | 0.501 | −0.1714 | 0.6499 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Taieh, E.M.; AlHadid, I.; Kaabneh, K.; Alkhawaldeh, R.S.; Khwaldeh, S.; Masa’deh, R.; Alrowwad, A. Predictors of Smartphone Addiction and Social Isolation among Jordanian Children and Adolescents Using SEM and ML. Big Data Cogn. Comput. 2022, 6, 92. https://doi.org/10.3390/bdcc6030092
Abu-Taieh EM, AlHadid I, Kaabneh K, Alkhawaldeh RS, Khwaldeh S, Masa’deh R, Alrowwad A. Predictors of Smartphone Addiction and Social Isolation among Jordanian Children and Adolescents Using SEM and ML. Big Data and Cognitive Computing. 2022; 6(3):92. https://doi.org/10.3390/bdcc6030092
Chicago/Turabian StyleAbu-Taieh, Evon M., Issam AlHadid, Khalid Kaabneh, Rami S. Alkhawaldeh, Sufian Khwaldeh, Ra’ed Masa’deh, and Ala’Aldin Alrowwad. 2022. "Predictors of Smartphone Addiction and Social Isolation among Jordanian Children and Adolescents Using SEM and ML" Big Data and Cognitive Computing 6, no. 3: 92. https://doi.org/10.3390/bdcc6030092
APA StyleAbu-Taieh, E. M., AlHadid, I., Kaabneh, K., Alkhawaldeh, R. S., Khwaldeh, S., Masa’deh, R., & Alrowwad, A. (2022). Predictors of Smartphone Addiction and Social Isolation among Jordanian Children and Adolescents Using SEM and ML. Big Data and Cognitive Computing, 6(3), 92. https://doi.org/10.3390/bdcc6030092