Assessment of Metal(loid)s in Fern Amauropelta rivularioides (Fee), Soil, and River Water in a Peri-Urban Agriculture Area on the Brazil–Paraguay Border
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Collection Procedures
2.3. Specimen Collection and Plant Identification
2.4. Procedure for Collecting Water
2.5. Soil Digestion Procedure
2.6. Plant Digestion Procedure
2.7. Quantification Using ICP OES
2.8. Calculation of Geoaccumulation Index (Igeo)
2.9. Calculation of Biological Accumulation Coefficient (BAC) of Heavy Metals
2.10. Calculation of Contamination Factor (CF) and Pollution Load Index (PLI)
2.11. Calculation of Human Health Risk Assessment of Heavy Metals
2.12. Calculation of Hazard Quotient (HQ) and Hazard Index (HI)
2.13. Calculation of Carcinogenic Risk
2.14. Statistical Analysis
3. Results
3.1. Results of Concentration of Meta(loid)s in Soil
3.2. Results of Concentration of Meta(loid)s in Plant and Water
3.3. Results of Geoaccumulation Index (Igeo)
3.4. Results of Biological Accumulation Coefficient (BAC) of Heavy Metals
3.5. Results of Contamination Factor (CF) and Pollution Load Index (PLI)
Element | C1 (Igeo) | Pollution Levels (C1) | C2 (Igeo) | Pollution Levels (C2) | C3 (Igeo) | Pollution Levels (C3) | C4 (Igeo) | Pollution Levels (C4) | C5 (Igeo) | Pollution Levels (C5) |
---|---|---|---|---|---|---|---|---|---|---|
As | 0.185 | Unpolluted–Moderate | −0.077 | Unpolluted | 0.081 | Unpolluted–Moderate | 0.142 | Unpolluted–Moderate | 0.233 | Unpolluted–Moderate |
Ba | −2.055 | Unpolluted | −2.298 | Unpolluted | −2.129 | Unpolluted | −2.037 | Unpolluted | −2.077 | Unpolluted |
Ca | 0.463 | Unpolluted–Moderate | −0.418 | Unpolluted | −0.017 | Unpolluted | 0.109 | Unpolluted–Moderate | 0.303 | Unpolluted–Moderate |
Co | −0.228 | Unpolluted | −0.739 | Unpolluted | −1.102 | Unpolluted | −0.859 | Unpolluted | −0.305 | Unpolluted |
Cr | −1.794 | Unpolluted | −2.190 | Unpolluted | −2.287 | Unpolluted | −2.176 | Unpolluted | −2.067 | Unpolluted |
Cu | −1.620 | Unpolluted | −1.849 | Unpolluted | −1.869 | Unpolluted | −1.613 | Unpolluted | −1.741 | Unpolluted |
K | −1.235 | Unpolluted | −1.163 | Unpolluted | −0.849 | Unpolluted | −0.498 | Unpolluted | −2.103 | Unpolluted |
Mg | 1.133 | Moderately polluted | 1.287 | Moderately polluted | 1.335 | Moderately polluted | 1.311 | Moderately polluted | 1.440 | Moderately polluted |
Mn | 0.966 | Unpolluted–Moderate | 0.087 | Unpolluted–Moderate | −0.197 | Unpolluted | −0.124 | Unpolluted | 0.201 | Unpolluted–Moderate |
Ni | −2.142 | Unpolluted | −2.387 | Unpolluted | −2.508 | Unpolluted | −3.193 | Unpolluted | −2.869 | Unpolluted |
P | 7.641 | Extremely polluted | 7.133 | Extremely polluted | 7.405 | Extremely polluted | 7.702 | Extremely polluted | 7.764 | Extremely polluted |
Pb | −1,246 | Unpolluted | −1.763 | Unpolluted | −1.545 | Unpolluted | −1.571 | Unpolluted | −1.553 | Unpolluted |
S | −5.263 | Unpolluted | −5.704 | Unpolluted | −5.462 | Unpolluted | −5.301 | Unpolluted | −5.459 | Unpolluted |
Se | 1.738 | Moderately polluted | 1.442 | Moderately polluted | 1.637 | Moderately polluted | 1.614 | Moderately polluted | 1.728 | Moderately polluted |
Zn | −1.208 | Unpolluted | −1.373 | Unpolluted | −1.247 | Unpolluted | −1.396 | Unpolluted | −1.438 | Unpolluted |
Element | A. rivularioides—C1 | A. rivularioides—C2 | A. rivularioides—C3 | A. rivularioides—C4 | A. rivularioides—C5 |
---|---|---|---|---|---|
As | 10.299 | 2.949 | 1.146 | 0.141 | 0.384 |
Ba | 8.514 | 4.698 | 4.724 | 4.979 | 2.495 |
Ca | 29.914 | 41.027 | 37.006 | 21.484 | 23.418 |
Co | 1.656 | 0.213 | 0.520 | 0.350 | 0.056 |
Cr | 7.480 | 0.711 | 0.309 | 0.424 | 0.251 |
Cu | 0.248 | 0.079 | 0.144 | 0.107 | 0,060 |
K | 149.386 | 143.555 | 122.994 | 94.188 | 417.876 |
Mg | 5.664 | 4.704 | 5.096 | 4.673 | 4.428 |
Mn | 2.082 | 0.470 | 0.864 | 0.905 | 0.381 |
Ni | 6.574 | 0.940 | 0.613 | 1.283 | 1.663 |
P | 19.272 | 20.538 | 28.098 | 20.126 | 29.783 |
Pb | 10.785 | 2.524 | 0 | 0 | 0 |
S | 20.019 | 18.659 | 24.170 | 26.860 | 28.633 |
Se | 10.011 | 2.834 | 0.956 | 0 | 0.144 |
Zn | 3.674 | 1.172 | 2.160 | 1.703 | 1.546 |
Element | C1 (CF) | C2 (CF) | C3 (CF) | C4 (CF) | C5 (CF) |
---|---|---|---|---|---|
As | 1.705 | 1.420 | 1.587 | 1.653 | 1.762 |
Ba | 0.361 | 0.305 | 0.342 | 0.365 | 0.355 |
Ca | 2.068 | 1.121 | 1.485 | 1.619 | 1.851 |
Co | 1.280 | 0.899 | 0.699 | 0.826 | 1.217 |
Cr | 0.432 | 0.328 | 0.307 | 0.332 | 0.358 |
Cu | 0.488 | 0.416 | 0.411 | 0.490 | 0.448 |
K | 0.638 | 0.670 | 0.833 | 1.063 | 0.349 |
Mg | 3.296 | 3.664 | 3.785 | 3.723 | 4.070 |
Mn | 2.931 | 1.596 | 1.309 | 1.379 | 1.725 |
Ni | 0.339 | 0.287 | 0.263 | 0.164 | 0.205 |
P | 299.342 | 210.569 | 254.198 | 312.359 | 325.989 |
Pb | 0.633 | 0.441 | 0.514 | 0.505 | 0.511 |
S | 0.039 | 0.029 | 0.034 | 0.038 | 0.034 |
Se | 5.003 | 4.080 | 4.668 | 4.594 | 4.965 |
Zn | 0.650 | 0.579 | 0.633 | 0.570 | 0.553 |
PLI | 1.21 | 0.942 | 0.999 | 1.04 | 1.12 |
3.6. Results of Human Health Risk Assessment of Heavy Metals
3.7. Results of Hazard Quotient (HQ) and Hazard Index (HI)
3.8. Results of Carcinogenic Risk
4. Discussion
4.1. Concentration of Meta(loid)s in Soil
4.2. Concentration of Meta(loid)s in Plant and Water
4.3. Geoaccumulation Index (Igeo)
4.4. Biological Accumulation Coefficient (BAC) of Heavy Metals
4.5. Biological Accumulation Coefficient (BAC) Analysis of Fern Plant and Comparison with Other Studies
4.6. Contamination Factor (CF) and Pollution Load Index (PLI)
4.7. Hazard Quotient (HQ) and Hazard Index (HI)
Dermal Exposure to Soil
4.8. Carcinogenic Risk
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunapala, R.; Gangahagedara, R.; Wanasinghe, W.C.S.; Samaraweera, A.U.; Gamage, A.; Rathnayaka, C.; Hameed, Z.; Baki, Z.A.; Madhujith, T.; Merah, O. Urban agriculture: A strategic pathway to building resilience and ensuring sustainable food security in cities. Farming Syst. 2025, 3, 100150. [Google Scholar] [CrossRef]
- Fei, S.; Wu, R.; Liu, H.; Yang, F.; Wang, N. Technological innovations in urban and peri-urban agriculture: Pathways to sustainable food systems in metropolises. Horticulturae 2025, 11, 212. [Google Scholar] [CrossRef]
- FAO; Rikolto and RUAF. Urban and Peri-Urban Agriculture Sourcebook—From Production to Food Systems; FAO and Rikolto: Rome, Italy, 2022. [Google Scholar]
- Hu, N.-W.; Yu, H.-W.; Deng, B.-L.; Hu, B.; Zhu, G.-P.; Yang, X.-T.; Wang, T.-Y.; Zeng, Y.; Wang, Q.-Y. Levels of heavy metal in soil and vegetable and associated health risk in peri-urban areas across China. Ecotoxicol. Enviro. Saf. 2023, 259, 115037. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Khan, D.K.; Santra, S.C. An assessment of heavy metal contamination in vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India. Bull. Environ. Contam. Toxicol. 2008, 80, 115–118. [Google Scholar] [CrossRef]
- Sharma, R.K.; Agrawal, M.; Marshall, F.M. Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food Chem. Toxicol. 2009, 47, 583–591. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 133–164. [Google Scholar] [CrossRef]
- WHO. Preventing Disease Through Healthy Environments: Exposure to Cadmium: A Major Public Health Concern; World Health Organization: Geneva, Switzerland, 2010; Available online: https://www.who.int/publications/i/item/WHO-CED-PHE-EPE-19-4-3 (accessed on 29 April 2025).
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Oubane, M.; Khadra, A.; Ezzariai, A.; Kouisni, L.; Hafidi, M. Heavy metal accumulation and genotoxic effect of long-term wastewater irrigated peri-urban agricultural soils in semiarid climate. Sci. Total Environ. 2021, 794, 148611. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Sharma, R.K.; Agrawal, M.; Marshall, F. Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull. Environ. Contam. Toxicol. 2006, 77, 312–318. [Google Scholar] [CrossRef]
- Wang, J.; Gao, P.; Li, M.Y.; Ma, J.Y.; Li, J.Y.; Yang, D.L.; Cui, D.L.; Xiang, P. Dermal bioaccessibility and cytotoxicity of heavy metals in urban soils from a typical plateau city: Implication for human health. Sci. Total Environ. 2022, 835, 155544. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Washington, DC, USA, 2004. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e (accessed on 29 April 2025).
- Shelnutt, S.R.; Goad, P.; Belsito, D.V. Dermatological toxicity of hexavalent chromium. Crit. Rev. Toxicol. 2007, 37, 375–387. [Google Scholar] [CrossRef]
- Silverberg, N.B.; Pelletier, J.L.; Jacob, S.E.; Schneider, L.C. Section on dermatology, section on allergy and immunology. Nickel Allergic Contact Dermatitis: Identification, Treatment, and Prevention. Pediatrics 2020, 145, e20200628. [Google Scholar] [CrossRef]
- Kapaj, S.; Peterson, H.; Liber, K.; Bhattacharya, P. Human health effects from chronic arsenic poisoning—A review. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 2006, 41, 2399–2428. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Toxicological Profile for Lead; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2020. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf (accessed on 29 April 2025).
- ATSDR. Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2012. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=48&tid=15 (accessed on 29 April 2025).
- Angon, P.B.; Islam, M.S.; Shreejana, K.C.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.; Cai, Y.; Kennelley, E.D. A fern that hyperaccumulates arsenic. Nature 2001, 409, 579. [Google Scholar] [CrossRef]
- Zhao, F.J.; McGrath, S.P.; Meharg, A.A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant. Biol. 2010, 61, 535–559. [Google Scholar] [CrossRef]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef]
- Cakaj, A.; Drzewiecka, K.; Hanć, A.; Lisiak-Zielińska, M.; Ciszewska, L.; Drapikowska, M. Plants as effective bioindicators for heavy metal pollution monitoring. Environ. Res. 2024, 256, 119222. [Google Scholar] [CrossRef]
- Andrade, G.C.; Santana, B.V.N.; Rinaldi, M.C.S.; Ferreira, S.O.; da Silva, R.C.; da Silva, L.C. Using native plants to evaluate urban metal pollution and appoint emission sources in the Brazilian Steel Valley region. Environ. Sci. Pollut. Res. 2024, 31, 30427–30439. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Haghighizadeh, A.; Rajabi, O.; Nezarat, A.; Hajyani, Z.; Haghmohammadi, M.; Hedayatikhah, S.; Asl, S.D.; Beni, A.A. Comprehensive analysis of heavy metal soil contamination in mining environments: Impacts, monitoring techniques, and remediation strategies. Arab. J. Chem. 2024, 17, 105777. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Sazykin, I.; Khmelevtsova, L.; Azhogina, T.; Sazykina, M. Heavy metals influence on the bacterial community of soils: A review. Agriculture 2023, 13, 653. [Google Scholar] [CrossRef]
- Sharma, R.K.; Agrawal, M.; Marshall, F.M. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol. Environ. Saf. 2007, 66, 258–266. [Google Scholar] [CrossRef]
- Liu, H.; Probst, A.; Liao, B. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 2005, 1, 153–166. [Google Scholar] [CrossRef]
- National Institute of Colonization and Agrarian Reform (INCRA)—Brazil. Available online: http://www.gov.br/incra/pt-br/assuntos/noticias/mutirao-leva-atendimento-a-familias-do-assentamento-itamarati (accessed on 24 April 2025).
- Governo do Estado de Mato Grosso do Sul, Secretaria de Estado de Meio Ambiente e Desenvolvimento Econômico—SEMADE—Geoambientes da Faixa de Fronteira, GTNS/MS, Instituto do Meio Ambiente de Mato Grosso do Sul, Brasil. 2016. Available online: https://www.imasul.ms.gov.br/wp-content/uploads/2016/02/Geoambientes-da-Faixa-de-Fronteira-Versao-2016.pdf (accessed on 24 April 2025).
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelhor, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; 356p. [Google Scholar]
- Fernandes, M.R.; Melo, E.S.d.P.; Ancel, M.A.P.; Guimarães, R.d.C.A.; Hiane, P.A.; Geilow, K.d.C.F.; Bogo, D.; Tschinkel, P.F.S.; Rosa, A.C.G.; Medeiros, C.S.d.A.; et al. Assessment of the risk to human health and pollution levels due to the presence of metal(loid)s in sediments, water, and fishes in urban rivers in the state of Mato Grosso do Sul, Brazil. Urban Sci. 2025, 9, 114. [Google Scholar] [CrossRef]
- Ramanathan, T.; Ting, Y.-P. Selection of wet digestion methods for metal quantification in hazardous solid wastes. J. Environ. Chem. Eng. 2015, 3, 1459–1467. [Google Scholar] [CrossRef]
- Junior, A.d.S.A.; Ancel, M.A.P.; Garcia, D.A.Z.; Melo, E.S.d.P.; Guimarães, R.d.C.A.; Freitas, K.d.C.; Bogo, D.; Hiane, P.A.; Vilela, M.L.B.; Nascimento, V.A.d. Monitoring of metal(loid)s using Brachiaria decumbens Stapf leaves along a highway located close to an urban region: Health risks for tollbooth workers. Urban Sci. 2024, 8, 128. [Google Scholar] [CrossRef]
- Rosa, A.C.G.; Melo, E.S.P.; Junior, A.S.A.; Gondim, J.M.S.; de Sousa, A.G.; Cardoso, C.A.L.; Viana, L.F.; Carvalho, A.M.A.; Machate, D.J.; do Nascimento, V.A. Transfer of metal(loid)s from soil to leaves and trunk xylem sap of medicinal plants and possible health risk assessment. Int. J. Environ. Res. Public Health 2022, 19, 660. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Perez, D.V.; Pereira, N.R.; Carvalho Junior, W.d.; Calderano Filho, B.; Bhering, S.B.; Chagas, C.d.S.; Silva, E.F.d.; Macedo, J.R.d. Determinação de Valores de Referência de Qualidade Para Solos do Estado do Mato Grosso do Sul; Embrapa Solos; Boletim de Pesquisa e Desenvolvimento: Rio de Janeiro, Brazil, 2022; p. 283. [Google Scholar]
- Senger, C.C.D.; Sanchez, L.M.B.; Pires, M.B.G.; Kaminski, J. Teores minerais em pastagens do Rio Grande do Sul. II. Sódio, enxofre, zinco, cobre, ferro e manganês. Pesqui. Agropecuária Bras. 1997, 32, 101–108. [Google Scholar]
- Da Silva, L.C. Teores Totais de Potássio, Cálcio, Magnésio e Sódio em solos do Sudeste da Província Mineral de Carajás; Final Project (Graduation); Curso de Engenharia Ambiental e Energias Renováveis, Universidade Federal Rural da Amazônia: Belém, Brazil, 2019. [Google Scholar]
- Tokura, L.K.; Nogueira, M.A.; Costa, A.C.S. Estoques e Frações de Fósforo no solo sob Plantio Direto com Diferentes Espécies de Cobertura e Sistemas De Rotação; Technical Report. Documentos 231; Embrapa Soja: Londrina, Brazil, 2002. [Google Scholar]
- Gabos, M.B. Background Concentrations and Adsorption of Selenium in Tropical Soils. Ph.D. Thesis, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, Brazil, 2012. [Google Scholar]
- Sabir, M.; Baltrėnaitė-Gedienė, E.; Ditta, A.; Ullah, H.; Kanwal, A.; Ullah, S.; Faraj, T.K. Bioaccumulation of heavy metals in a soil–plant system from an open dumpsite and the associated health risks through multiple routes. Sustainability 2022, 14, 13223. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Belzunce, M.J.; Solaun, O.; Oreja, J.A.G.; Millán, E.; Víctor Pérez, V. Chapter 12—Contaminants in sediments. In Oceanography and Marine Environment of the Basque Country; Borja, Á., Collins, M., Eds.; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 2004; Volume 70, pp. 283–315. [Google Scholar] [CrossRef]
- Fahimah, N.; Salami, I.R.S.; Oginawati, K.; Mubiarto, H. Appraisal of pollution levels and non-carcinogenic health risks associated with the emergence of heavy metals in Indonesian community water for sanitation, hygiene, and consumption. Emerg. Contam. 2024, 10, 100313. [Google Scholar] [CrossRef]
- Miletić, A.; Lučić, M.; Onjia, A. Exposure factors in health risk assessment of heavy metal(loid)s in soil and sediment. Metals 2023, 13, 1266. [Google Scholar] [CrossRef]
- Didier, J.; Ewodo Mboudou, G.; Fantong, W.; Ombolo, A.; Chounna Yemele, G.; Jokam Nenkam, T.; Messi, G. Potentially toxic elements contamination in groundwater and human health risk assessment in the Mayo Bocki Watershed, North Cameroon. Arab. J. Geosci. 2023, 16, 479. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Dermal Exposure Assessment: A Summary of EPA Approaches; National Center for Environmental Assessment: Washington, DC, USA, 2007. [Google Scholar]
- USEPA (United States Environmental Protection Agency). Risk Assessment Guidance for Superfund Human—Health Evaluation Manual Part A; USEPA: Washington, DC, USA, 1989. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part (accessed on 30 April 2025).
- Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente (Conama). Resolução No 420, de 28 de Dezembro de 2009, Brasil. Available online: http://hab.eng.br/wp-content/uploads/2017/09/resolucao-conama-420-2009-gerenciamento-de-acs.pdf (accessed on 3 June 2024).
- USEPA (United States Environmental Protection Agency). Guidance for Developing Ecological Soil Screening Levels; USEPA: Washington, DC, USA, 2003. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/ecossl_guidance_chapters.pdf (accessed on 1 April 2025).
- Gonçalves, D.A.M.; Pereira, W.V.d.S.; Johannesson, K.H.; Pérez, D.V.; Guilherme, L.R.G.; Fernandes, A.R. Geochemical background for potentially toxic elements in forested soils of the state of Pará, Brazilian Amazon. Minerals 2022, 12, 674. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, J.; Zhuang, Z.; Wang, Q.; Li, H. Heavy metals in agricultural soils: Sources, influencing factors, and remediation strategies. Toxics 2024, 12, 63. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Domokos-Szabolcsy, É.; Shalaby, T.A.; Prokisch, J.; Fári, M. Selenium in agriculture: Water, air, soil, plants, food, animals and nanoselenium. In Co2 Sequestration, Biofuels and Depollution; Lichtfouse, E., Schwarzbauer, J., Robert, D., Eds.; Springer: Cham, Switzerland, 2015; Volume 5. [Google Scholar] [CrossRef]
- Li, W.; Zhu, T.; Yang, H.; Zhang, C.; Zou, X. Distribution characteristics and risk assessment of heavy metals in soils of the typical karst and non-karst aeas. Land 2022, 11, 1346. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Q.; Deng, M.; Japenga, J.; Li, T.; Yang, X.; He, Z. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag. 2018, 207, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Wysokinski, A.; Kuziemska, B.; Lozak, I. Heavy metal allocation to pea plant organs (Pisum sativum L.) from soil during different development stages and years. Agronomy 2023, 13, 673. [Google Scholar] [CrossRef]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 2009, 160, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar] [CrossRef]
- Morton-Bermea, O.; Hernández-Alvarez, E.; Almorín-Ávila, M.A.; Ordoñez-Godínez, S.; Bermendi-Orosco, L.; Retama, A. Historical trends of metals concentration in PM10 collected in the Mexico City metropolitan area between 2004 and 2014. Environ. Geochem. Health 2021, 43, 2781–2798. [Google Scholar] [CrossRef]
- Cao, C.; Wang, L.; Li, H.; Wei, B.; Yang, L. Temporal variation and ecological risk assessment of metals in soil nearby a Pb–Zn mine in Southern China. Int. J. Environ. Res. Public Health 2018, 15, 940. [Google Scholar] [CrossRef]
- Haruna, S.I.; Nkongolo, N.V. Tillage, cover crop and crop rotation effects on selected soil chemical properties. Sustainability 2019, 11, 2770. [Google Scholar] [CrossRef]
- Jin-Soo, C.; In-Ho, Y.; Kyoung-Woong, K. Heavy metal and arsenic accumulating fern species as potential ecological indicators in As-contaminated abandoned mines. Ecol. Indic. 2009, 9, 1275–1279. [Google Scholar] [CrossRef]
- Leal-Alvarado, D.A.; Martínez-Hernández, A.; Calderón-Vázquez, C.L.; Uh-Ramos, D.; Fuentes, G.; Ramírez-Prado, J.H.; Sáenz-Carbonell, L.; Santamaría, J.M. Identification of up-regulated genes from the metal-hyperaccumulator aquatic fern Salvinia minima Baker, in response to lead exposure. Aquat. Toxicol. 2017, 193, 86–96. [Google Scholar] [CrossRef]
- Costa, C.; Lia, F. Temporal variations of heavy metal sources in agricultural soils in Malta. Appl. Sci. 2022, 12, 3120. [Google Scholar] [CrossRef]
- Guilherme, L.R.G.; Corguinha, A.P.B.; Ribeiro do Valle, L.A.; Marchi, G. Heavy metals in P fertilizers marketed in Brazil: Is this a concern in our agroecosystems? In Proceedings of the SYMPHOS 2019—5th International Symposium on Innovation & Technology in the Phosphate Industry. Benguerir, Morocco, 7–9 October 2019; Available online: http://dx.doi.org/10.2139/ssrn.3627425 (accessed on 29 April 2025). [CrossRef]
- Pham, V.-D.; Fatimah, M.-S.; Sasaki, A.; Duong, V.-H.; Pham, K.-L.; Susan, P.; Watanabe, T. Seasonal variation and source identification of heavy metal(loid) contamination in peri-urban farms of Hue city, Vietnam. Environ. Polluti. 2021, 278, 116813. [Google Scholar] [CrossRef]
- Iksan, M.; Aba Kusrini, L. The ability of ferns to accumulate heavy metals (Hg, Pb And Cd) in the waters of the Gorontalo River. Int. J. App. Biol. 2019, 3, 36–44. [Google Scholar] [CrossRef]
- Xie, N.; Kang, C.; Ren, D.; Zhang, L. Assessment of the variation of heavy metal pollutants in soil and crop plants through field and laboratory tests. Sci. Total Environ. 2022, 811, 152343. [Google Scholar] [CrossRef]
- Gventsadze, G.; Ghambashidze, G.; Chankseliani, Z.; Sarjveladze, I.; Blum, W.E.H. Impacts of crop-specific agricultural practices on the accumulation of heavy metals in soil in Kvemo Kartli Region (Georgia): A preliminary assessment. Sustainability 2024, 16, 4244. [Google Scholar] [CrossRef]
- Rai, P.K. An eco-sustainable green approach for heavy metals management: Two case studies of developing industrial region. Environ. Monit. Assess. 2012, 184, 421–448. [Google Scholar] [CrossRef]
- Oluyemi, E.A.; Feuyit, G.; Oyekunle, J.A.O.; Ogunfowokan, A.O. Seasonal variations in heavy metal concentrations in soil and some selected crops at a landfill in Nigeria. Afr. J. Environ. Sci. Technol. 2008, 2, 89–96. [Google Scholar]
- Saarinen, T.S.; Kløve, B. Past and future seasonal variation in pH and metal concentrations in runoff from river basins on acid sulphate soils in Western Finland. J. Environ. Sci. Health Part A 2012, 47, 1614–1625. [Google Scholar] [CrossRef]
- Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente (Conama). Resolução Nº 357, de 17 de Novembro de 2005, Brasil. Available online: https://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=450 (accessed on 3 June 2024).
- Zhang, H.; Han, X.; Wang, G.; Mao, H.; Chen, X.; Zhou, L.; Huang, D.; Zhang, F.; Yan, X. Spatial distribution and driving factors of groundwater chemistry and pollution in an oil production region in the Northwest China. Sci. Total Environ. 2023, 875, 162635. [Google Scholar] [CrossRef]
- Pires, N.L.; Muniz, D.H.d.F.; Araújo, L.S.d.; Lima, J.E.F.W.; Gomes, R.A.T.; Caldas, E.D.; Oliveira-Filho, E.C. The seasonal characterization and temporal evolution of nitrogen, phosphorus and potassium in the surface and groundwater of an agricultural hydrographic basin in the Midwestern Brazilian Savanna. Sustainability 2024, 16, 7659. [Google Scholar] [CrossRef]
- Costa, L.A.; Steffen, J.L.; Oliveira, M.L.; Heemann, R.; Tassi, R.; Machado, C.B. Geochemical analyses of water and public health of the Mangueirão and Salso Streams in Caçapava do Sul, RS, Brazil. Rev. Ambient. Água. 2017, 12, 752–765. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). Ambient Water Quality Criteria to Address Nutrient Pollution in Lakes and Reservoirs. EPA 822-R-21-005, 2021. Available online: https://www.epa.gov/system/files/documents/2021-08/nutrient-lakes-reservoirs-report-final.pdf (accessed on 14 August 2025).
- Sharpley, A.N.; Jarvie, H.P.; Buda, A.R.; May, L.; Spears, B.; Kleinman, P.J.A. Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.M.; Santos, L.D.T.; Silva, A.J.; Pinho, G.P.; Montes, W.G. Metal Contamination of water and sediments of the Vieira River, Montes Claros, Brazil. Arch. Environ. Contam. Toxicol. 2019, 77, 527–536. [Google Scholar] [CrossRef]
- Wang, H.B.; Ye, Z.H.; Shu, W.S.; Li, W.C.; Wong, M.H.; Lan, C.Y. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of Southern China: Field surveys. Int. J. Phytoremediation 2006, 8, 1–11. [Google Scholar] [CrossRef]
- Indriolo, E.; Na, G.; Ellis, D.; Salt, D.E.; Banks, J.A. A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell. 2010, 22, 2045–2057. [Google Scholar] [CrossRef]
- Kamachi, H.; Kitamura, N.; Sakatoku, A.; Tanaka, D.; Nakamura, S. Barium accumulation in the metalliferous fern Athyrium yokoscense. Theor. Exp. Plant Physiol. 2015, 27, 99–107. [Google Scholar] [CrossRef]
- Fačkovcová, Z.; Vannini, A.; Monaci, F.; Grattacaso, M.; Paoli, L.; Loppi, S. Uptake of trace elements in the water fern Azolla filiculoides after short-term application of chestnut wood distillate (Pyroligneous Acid). Plants 2020, 11, 1179. [Google Scholar] [CrossRef]
- Funk, J.L.; Amatangelo, K.L. Physiological mechanisms drive differing foliar calcium content in ferns and angiosperms. Oecologia 2013, 173, 23–32. [Google Scholar] [CrossRef]
- Li, W.; Xu, F.; Chen, S.; Zhang, Z.; Zhao, Y.; Jin, Y.; Li, M.; Zhu, Y.; Liu, Y.; Yang, Y.; et al. A comparative study on Ca content and distribution in two Gesneriaceae species reveals distinctive mechanisms to cope with high rhizospheric soluble calcium. Front. Plant Sci. 2014, 5, 647. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.X.; Liang, D.Y.; Jiang, Q.W.; Mo, L.; Pu, G.Z.; Zhang, D. Growth performance and element concentrations reveal the calcicole-calcifuge behavior of three Adiantum species. BMC Plant Biol. 2020, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Kříbek, B.; Mihaljevič, M.; Sracek, O.; Knésl, I.; Ettler, V.; Nyambe, I. The extent of arsenic and of metal uptake by aboveground tissues of Pteris vittata and Cyperus involucratus growing in copper- and cobalt-rich tailings of the Zambian Copperbelt. Arch. Environ. Contam. Toxicol. 2011, 61, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Lwalaba, J.L.W.; Louis, L.T.; Zvobgo, G.; Richmond, M.E.A.; Fu, L.; Naz, S.; Mwamba, M.; Mundende, R.P.M.; Zhang, G. Physiological and molecular mechanisms of cobalt and copper interaction in causing phyto-toxicity to two barley genotypes differing in Co tolerance. Ecotoxicol. Environ. Saf. 2020, 187, 109866. [Google Scholar] [CrossRef]
- Souza, L.A.; Piotto, F.A.; Nogueirol, R.C.; Azevedo, R. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci. Agric. 2013, 70, 290–295. [Google Scholar] [CrossRef]
- Sridhar, B.B.M.; Han, F.X.; Diehl, S.V.; Monts, D.L.; Su, Y. Effect of phytoaccumulation of arsenic and chromium on structural and ultrastructural changes of brake fern (Pteris vittata). Braz. J. Plant Physiol. 2011, 23, 285–293. [Google Scholar] [CrossRef]
- Su, Y.; Han, F.X.; Maruthi Sridhar, B.B.; Monts, D.L. Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Environ. Toxicol. Chem. 2005, 24, 2019–2026. [Google Scholar] [CrossRef]
- Eslava-Silva, F.d.J.; Muñíz-Díaz de León, M.E.; Jiménez-Estrada, M. Pteridium aquilinum (Dennstaedtiaceae), a novel hyperaccumulator species of hexavalent chromium. Appl. Sci. 2023, 13, 5621. [Google Scholar] [CrossRef]
- De la Torre, J.B.; Claveria, R.J.; Perez, R.E.; Perez, T.R.; Doronila, A.I. Copper uptake by Pteris melanocaulon Fée from a copper-gold mine in Surigao del Norte, Philippines. Int. J. Phytoremediation 2016, 18, 435–441. [Google Scholar] [CrossRef]
- Freitas, F.; Lunardib, S.; Souza, L.B.; von der Ostena, J.S.C.; Arrudaa, R.; Andradec, R.L.T.; Battirola, L.D. Accumulation of copper by the aquatic macrophyte Salvinia biloba Raddi (Salviniaceae). Braz. J. Biol. 2018, 78, 133–139. [Google Scholar] [CrossRef]
- Carrillo-Niquete, G.; Andrade, J.L.; Hernández-Terrones, L.; Cobos-Gasca, V.; Fuentes, G.; Santamaría, J.M. Copper accumulation in the aquatic fern Salvinia minima causes more severe physiological stress than zinc. Biometals 2022, 35, 1043–1057. [Google Scholar] [CrossRef]
- Tran, C.T.; Mai, N.T.; Nguyen, V.T.; Nguyen, H.X.; Meharg, A.; Carey, M.; Dultz, S.; Marone, F.; Cichy, S.B.; Nguyen, M.N. Phytolith-associated potassium in fern: Characterization, dissolution properties and implications for slash-and-burn agriculture. Soil Use Manag. 2018, 34, 28–36. [Google Scholar] [CrossRef]
- Firmano, R.F.; Melo, V.F.; Montes, C.R.; de Oliveira, A.; de Castro, C.; Alleoni, L.R.F. Potassium reserves in the clay fraction of a tropical soil fertilized for three decades. Clays Clay Miner. 2020, 68, 237–249. [Google Scholar] [CrossRef]
- Khan, N.; Ullah, R.; Okla, M.K.; Abdel-Maksoud, M.A.; Saleh, I.A.; Abu-Harirah, H.A.; AlRamadneh, T.N.; AbdElgawad, H. Ecological factors affecting minerals and nutritional quality of “Dryopteris filix-mas (L.) Schott”: An underutilized wild leafy vegetable in rural communities. Front. Nutr. 2024, 11, 1276307. [Google Scholar] [CrossRef] [PubMed]
- Salazar, L.; Páez-Vacas, M.; Kessler, M.; Kluge, J.; Homeier, J. Variation of foliar calcium and magnesium in six fern species at different elevations. IOP Conf. Ser. Earth Environ. Sci. 2021, 690, 012056. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; He, X.; Li, Y.; Zhang, Y.; Chen, W. Response of total phenols, flavonoids, minerals, and amino acids of four edible fern species to four shading treatments. PeerJ 2020, 13, e8354. [Google Scholar] [CrossRef]
- Lizieri, C.; Aguiar, R.; Kuki, K.N. Manganese accumulation and its effects on three tropical aquatic macrophytes: Azolla caroliniana, Salvinia minima and Spirodela polyrhiza. Rodriguésia 2011, 62, 909–917. [Google Scholar] [CrossRef]
- Kubicka, K.; Samecka-Cymerman, A.; Kolon, K.; Kosiba, P.; Kempers, A.J. Chromium and nickel in Pteridium aquilinum from environments with various levels of these metals. Environ. Sci. Pollut. Res. 2015, 22, 527–534. [Google Scholar] [CrossRef]
- Kamachi, H.; Komori, I.; Tamura, H.; Sawa, Y.; Karahara, I.; Honma, Y.; Wada, N.; Kawabata, T.; Matsuda, K.; Ikeno, S.; et al. Lead tolerance and accumulation in the gametophytes of the fern Athyrium yokoscense. J. Plant Res. 2005, 118, 137–145. [Google Scholar] [CrossRef]
- Li, X.-W.; Lei, M.; Chen, T.-B.; Wan, X.-M. Roles of sulfur in the arsenic tolerant plant adiantum capillus-veneris and the hyperaccumulator Pteris vittata. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 498–502. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Azuma, T.; Maruyama, H.; Shinano, T.; Watanabe, T. Different nitrogen acquirement and utilization strategies might determine the ecological competition between ferns and angiosperms. Ann. Bot. 2023, 131, 1097–1106. [Google Scholar] [CrossRef]
- Feng, R.; Wei, C.; Tu, S.; Wu, F. Effects of Se on the uptake of essential elements in Pteris vittata L. Plant Soil. 2009, 325, 123–132. [Google Scholar] [CrossRef]
- Montanari, S.; Salinitro, M.; Simoni, A.; Ciavatta, C.; Tassoni, A. Foraging for selenium: A comparison between hyperaccumulator and non-accumulator plant species. Sci. Rep. 2023, 13, 10661. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; He, S.-X.; Zhou, Q.-Y.; Dai, Z.-H.; Liu, C.-J.; Xiao, S.-F.; Deng, S.-G.; Ma, L.Q. Foliar-selenium enhances plant growth and arsenic accumulation in As-hyperaccumulator Pteris vittata: Critical roles of GSH-GSSG cycle and arsenite antiporters PvACR3. J. Hazard Mater. 2024, 476, 135154. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.-H.; Peng, Y.-J.; Ding, S.; Chen, J.-Y.; He, S.-X.; Hu, C.-Y.; Cao, Y.; Guan, D.-X.; Ma, L.Q. Selenium increased arsenic accumulation by upregulating the expression of genes responsible for arsenic reduction, translocation, and sequestration in arsenic hyperaccumulator Pteris vittata. Environ. Sci. Technol. 2022, 56, 14146–14153. [Google Scholar] [CrossRef] [PubMed]
- An, Z.-Z.; Huang, Z.-C.; Lei, M.; Liao, X.-Y.; Zheng, Y.-M.; Chen, T.-B. Zinc tolerance and accumulation in Pteris vittata L. and its potential for phytoremediation of Zn- and As-contaminated soil. Chemosphere 2006, 62, 796–802. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for manganese. In Chapter 2: Relevance to Public Health—Background and Environmental Exposures to Manganese in the United States; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2012. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp151-c2.pdf (accessed on 24 June 2025).
- Georgaki, M.-N.; Charalambous, M.; Kazakis, N.; Talias, M.A.; Georgakis, C.; Papamitsou, T.; Mytiglaki, C. Chromium in Water and Carcinogenic Human Health Risk. Environments 2023, 10, 33. [Google Scholar] [CrossRef]
- Hagvall, L.; Pour, M.D.; Feng, J.; Karma, M.; Hedberg, Y.; Malmberg, P. Skin permeation of nickel, cobalt and chromium salts in ex vivo human skin, visualized using mass spectrometry imaging. Toxicol Vitr. 2021, 76, 105232. [Google Scholar] [CrossRef]
- ATSDR—Agency for Toxic Substances and Disease Registry (2005). Toxicological Profile for Zinc. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp60.pdf (accessed on 24 June 2025).
- Alharbi, T.; Nour, H.E.; El-Sorogy, A.S.; Al-Kahtany, K.; Giacobbe, S.; Alarif, S.S. Evaluation of health risks and heavy metals toxicity in agricultural soils in Central Saudi Arabia. Environ. Monit. Assess. 2025, 197, 419. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Arsenic; U.S. Department of Health and Human Services: Research Triangle Park, NC, USA, 2007. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf (accessed on 24 June 2025).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Chromium; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2012. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=62&tid=17 (accessed on 24 June 2025).
- ATSDR. Toxicological Profile for Copper. 2004. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp132.pdf (accessed on 24 June 2025).
- Li, H.; Toh, P.Z.; Tan, J.Y.; Zin, M.T.; Lee, C.-Y.; Li, B.; Leolukman, M.; Bao, H.; Kang, L. Selected Biomarkers Revealed Potential Skin Toxicity Caused by Certain Copper Compounds. Sci. Rep. 2016, 6, 37664. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). ToxGuide for Cobalt; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2004. Available online: https://www.atsdr.cdc.gov/toxguides/toxguide-33.pdf (accessed on 24 June 2025).
- Anderson, S.E.; Meade, B.J. Potential health effects associated with dermal exposure to occupational chemicals. Environ. Health Insights 2014, 8 (Suppl. S1), 51–62. [Google Scholar] [CrossRef]
- Lidén, C.; Bruze, M.; Menne, T. Metals. In Contact Dermatitis; Springer: Berlin/Heidelberg, Germany, 2011; pp. 643–674. Available online: https://link.springer.com/book/10.1007/978-3-642-03827-3 (accessed on 24 June 2025).
- Ahlström, M.G.; Thyssen, J.P.; Wennervaldt, M.; Menné, T.; Johansen, J.D. Nickel allergy and allergic contact dermatitis: A clinical review of immunology, epidemiology, exposure, and treatment. Contact Dermat. 2019, 81, 227–241. [Google Scholar] [CrossRef]
- Chiou, Y.H.; Wong, R.H.; Chao, M.R.; Chen, C.Y.; Liou, S.H.; Lee, H. Nickel accumulation in lung tissues is associated with increased risk of p53 mutation in lung cancer patients. Environ. Mol. Mutagen. 2014, 55, 624–632. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Phosphorus; ATSDR: Washington, DC, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK598124/ (accessed on 24 June 2025).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Selenium; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2003. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp92-c3.pdf (accessed on 24 June 2025).
Collection | Collection dates | Planting Period |
---|---|---|
C1 | 1 June 2019 | Post-harvest corn |
C2 | 24 August 2019 | inter-harvest |
C3 | 28 December 2019 | Post-planting soybean; |
C4 | 9 April 2020 | inter-harvest |
C5 | 7 August 2020 | Before corn harvest; |
Elements | LOD (mg/L) | LOQ (mg/L) | (R2) | Spike Concentration (%) |
---|---|---|---|---|
As | 0.00258 | 0.00860 | 0.9998 | 96 |
Ba | 0.00026 | 0.00088 | 0.9948 | 95 |
Ca | 0.00542 | 0.01807 | 0.9925 | 110 |
Co | 0.00099 | 0.00329 | 0.9958 | 81 |
Cr | 0.00141 | 0.00469 | 0.9955 | 98 |
Cu | 0.00255 | 0.00849 | 0.9951 | 103 |
K | 0.20316 | 0.67721 | 0.9908 | 97 |
Mg | 0.00046 | 0.00155 | 0.9950 | 102 |
Mn | 0.00085 | 0.00284 | 0.9949 | 99 |
Ni | 0.00083 | 0.00278 | 0.9960 | 112 |
P | 0.02397 | 0.07989 | 0.9851 | 100 |
Pb | 0.00280 | 0.00932 | 0.9993 | 110 |
S | 0.02270 | 0.07567 | 0.9941 | 95 |
Se | 0.00425 | 0.01416 | 0.9957 | 96 |
Zn | 0.00049 | 0.00162 | 0.9959 | 103 |
Element | RfDwater | RfDsoil |
---|---|---|
As | 9.0 × 10−6 | 3.0 × 10−6 |
Ca | ND | ND |
Co | 3.0 × 10−7 | 3 × 10−4 |
Cr | 1.5 × 10−4 | 0.0195 |
Cu | 4.0 × 10−5 | 4.0 × 10−2 |
K | ND | ND |
Mg | ND | ND |
Mn | 2.4 × 10−5 | 9.0 × 10−4 |
Ni | 2.0 × 10−5 | 8.0 × 10−4 |
P | 2.0 × 10−8 | 2.0 × 10−5 |
S | ND | ND |
Se | 5.0 × 10−6 | 5.0 × 10−3 |
Zn | 3.0 × 10−4 | 3.0 × 10−1 |
Pb | 4.0 × 10−5 | 4.0 × 10−2 |
Element | Concentrations of Elements in Soil: (Collection) | |||||||
---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | Conama/Brazil (mg/kg) | USEPA/Alabama/USA (mg/kg) | State of Pará, Brazil (mg/kg) | |
As | 5.253 ± 0.034 | 4.032 ± 0.376 | 4.654 ± 0.264 | 4.881 ± 0.249 | 5.138 ± 0.326 | 15 | 4.7 | 0.8 |
Ba | 23.997 ± 0.437 | 20.587 ± 0.058 | 23.027 ± 0.190 | 24.591 ± 0.150 | 23.943 ± 0.117 | 300 | 200 | 16.7 |
Ca | 181.413 ± 34.034 | 99.623 ± 17.305 | 119.144 ± 35.333 | 146.674 ± 21.913 | 170.681 ± 22.132 | * | * | * |
Co | 14.927 ± 0.029 | 10.380 ± 0.118 | 8.120 ± 0.043 | 9.564 ± 0.093 | 14.027 ± 0.156 | 25 | 4.4 | 1.6 |
Cr | 12.997 ± 0.111 | 9.891 ± 0.071 | 9.284 ± 0.026 | 10.027 ± 0.028 | 10.734 ± 0.112 | 75 | 30.6 | 14.3 |
Cu | 13.849 ± 0.057 | 11.789 ± 0.076 | 11.653 ± 0.047 | 13.952 ± 0.021 | 12.681 ± 0.106 | 60 | 9.6 | 6.0 |
K | 54.931 ± 11.458 | 52.038 ± 17.768 | 74.841 ± 11.913 | 81.192 ± 29.437 | 23.257 ± 13.106 | * | * | * |
Mg | 507.875 ± 12.112 | 565.517 ± 13.251 | 586.243 ± 11.931 | 568.096 ± 20.112 | 639.177 ± 4.356 | * | * | * |
Mn | 524.560 ± 11.703 | 284.664 ± 6.929 | 235.120 ± 4.335 | 243.412 ± 8.538 | 311.844 ± 3.774 | * | 420 | 40.7 |
Ni | 2.899 ± 0.028 | 2.424 ± 0.045 | 2.214 ± 0.056 | 1.366 ± 0.046 | 1.699 ± 0.069 | 30 | 11 | 1.4 |
P | 296.808 ± 2.534 | 202.104 ± 8.465 | 247.414 ± 6.784 | 299.895 ± 12.464 | 317.080 ± 8.909 | * | * | * |
Pb | 6.867 ± 0.123 | 4.522 ± 0.362 | 5.445 ± 0.234 | 5.466 ± 0.111 | 5.363 ± 0.285 | 72 | 9.3 | 10.4 |
S | 65.891 ± 0.522 | 46.048 ± 2.883 | 54.312 ± 3.546 | 61.233 ± 3.456 | 55.590 ± 2.377 | * | * | * |
Se | 7.878 ± 0.177 | 6.092 ± 0.468 | 7.045 ± 0.465 | 7.299 ± 0.095 | 7.588 ± 0.412 | 5 | 0.3 | * |
Zn | 10.561 ± 0.086 | 9.298 ± 0.200 | 10.213 ± 0.151 | 9.203 ± 0.146 | 8.951 ± 0.129 | 300 | 26 | 7.0 |
Element | Concentrations of Elements in Fern: (Collections) | ||||
---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | |
As | 53.913 ± 0.539 | 12.193 ± 0.806 | 4.848 ± 0.786 | 0.453 ± 0.268 | 1.556 ± 0.540 |
Ba | 206.436 ± 1.583 | 96.348 ± 0.638 | 107.430 ± 2.246 | 117.561 ± 5.626 | 59.880 ± 0.153 |
Ca | 6363.602 ± 81.337 | 4691.339 ± 105.821 | 5584.003 ± 132.565 | 3453.218 ± 168.704 | 4462.862 ± 52.526 |
Co | 24.560 ± 0.214 | 2.047 ± 0.186 | 4.040 ± 0.202 | 3.355 ± 0.021 | 0.676 ± 0.123 |
Cr | 97.986 ± 0.061 | 6.964 ± 0.120 | 2.837 ± 0.039 | 3.800 ± 0.461 | 2.587 ± 0.134 |
Cu | 3.429 ± 0.017 | 0.931 ± 0.002 | 1.670 ± 0.018 | 1.401 ± 0.088 | 0.755 ± 0.015 |
K | 9878.035 ± 39.572 | 9990.330 ± 30.704 | 10,599.355 ± 70.909 | 10,125.222 ± 294.723 | 15,130.377 ± 64.832 |
Mg | 2932.397 ± 12.898 | 2672.240 ± 50.419 | 3016.386 ± 31.835 | 2660.364 ± 88.059 | 2799.871 ± 49.634 |
Mn | 1109.810 ± 6.480 | 136.082 ± 0.919 | 205.203 ± 1.663 | 219.357 ± 8.626 | 119.631 ± 0.580 |
Ni | 19.068 ± 0.173 | 2.221 ± 0.101 | 1.210 ± 0.181 | 1.712 ± 0.100 | 2.802 ± 0.138 |
P | 5715.146 ± 53.660 | 4294.266 ± 30.496 | 7003.276 ± 139.120 | 6230.850 ± 55.835 | 9679.458 ± 29.331 |
Pb | 74.795 ± 0.595 | 11.738 ± 0.588 | <LOD | <LOD | <LOD |
S | 1315.559 ± 13.970 | 910.503 ± 2.492 | 1369.076 ± 29.331 | 1691.245 ± 46.281 | 1650.997 ± 8.752 |
Se | 80.353 ± 0.286 | 17.726 ± 0.868 | 5.879 ± 1.300 | <LOD | 0.295 ± 0.861 |
Zn | 38.653 ± 0.464 | 11.025 ± 0.109 | 22.125 ± 0.263 | 15.824 ± 0.098 | 13.998 ± 0.044 |
Element | Concentrations of Elements in Water: (Collection) | ||||
---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | |
As | <LOD | <LOD | <LOD | <LOD | <LOD |
Ba | 0.020 ± 0.000 | 0.017 ± 0.000 | 0.018 ± 0.000 | 0.015 ± 0.000 | 0.016 ± 0.000 |
Ca | <LOD | <LOD | <LOD | <LOD | <LOD |
Co | <LOD | <LOD | <LOD | <LOD | <LOD |
Cr | <LOD | <LOD | <LOD | 0.013 ± 0.000 | <LOD |
Cu | <LOD | <LOD | <LOD | <LOD | <LOD |
K | 0.457 ± 0.043 | 0.490 ± 0.046 | 0.590 ± 0.049 | 0.488 ± 0.042 | 0.564 ± 0.022 |
Mg | 1.150 ± 0.011 | 1.124 ± 0.005 | 1.248 ± 0.005 | 0.996 ± 0.005 | 1.166 ± 0.006 |
Mn | 0.020 ± 0.000 | 0.012 ± 0.000 | 0.018 ± 0.000 | 0.013 ± 0.000 | 0.005 ± 0,000 |
Ni | <LOD | <LOD | <LOD | 0.010 ± 0.000 | <LOD |
P | 0.332 ± 0.006 | 0.308 ± 0.018 | 0.362 ± 0.011 | 0.348 ± 0.005 | 0.309 ± 0.009 |
Pb | <LOD | <LOD | <LOD | <LOD | <LOD |
S | 0.774 ± 0.008 | 0.680 ± 0.007 | 0.650 ± 0.003 | 0.652 ± 0.017 | 0.666 ± 0.001 |
Se | <LOD | <LOD | <LOD | <LOD | <LOD |
Zn | 0.008 ± 0.000 | <LOD | <LOD | <LOD | <LOD |
Element | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
As | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Ba | 0.005918 | 0.005030 | 0.005326 | 0.004438 | 0.004734 |
Ca | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Co | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Cr | 0.000000 | 0.000000 | 0.000000 | 0.007692 | 0.000000 |
Cu | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
K | 0.146041 | 0.158517 | 0.147984 | 0.156822 | 0.173369 |
Mg | 0.340890 | 0.333919 | 0.370567 | 0.346862 | 0.362424 |
Mn | 0.005918 | 0.003551 | 0.005326 | 0.003846 | 0.001479 |
Ni | 0.000000 | 0.000000 | 0.000000 | 0.000592 | 0.000000 |
P | 0.099999 | 0.096358 | 0.110313 | 0.104420 | 0.094101 |
Pb | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
S | 0.231237 | 0.203205 | 0.193239 | 0.197851 | 0.197179 |
Se | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Zn | 0.001419 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Element | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
As | 0.459628 | 0.383211 | 0.427548 | 0.445979 | 0.475015 |
Ba | 0.070806 | 0.059826 | 0.067279 | 0.071696 | 0.069722 |
Ca | 0.624333 | 0.338839 | 0.447651 | 0.488539 | 0.558743 |
Co | 0.043340 | 0.030422 | 0.023655 | 0.027985 | 0.041100 |
Cr | 0.037985 | 0.028868 | 0.026979 | 0.029138 | 0.031430 |
Cu | 0.040297 | 0.034383 | 0.033905 | 0.040492 | 0.037055 |
K | 0.192385 | 0.202287 | 0.251400 | 0.320586 | 0.105374 |
Mg | 1.506843 | 1.677181 | 1.733417 | 1.704537 | 1.864860 |
Mn | 1.554008 | 0.844992 | 0.693904 | 0.730113 | 0.914613 |
Ni | 0.008482 | 0.007155 | 0.006578 | 0.004092 | 0.005123 |
P | 0.867447 | 0.610197 | 0.736627 | 0.905169 | 0.944666 |
Pb | 0.020256 | 0.014153 | 0.016457 | 0.016161 | 0.016367 |
S | 0.192455 | 0.141795 | 0.167664 | 0.187459 | 0.167980 |
Se | 0.023342 | 0.019010 | 0.021763 | 0.021427 | 0.023183 |
Zn | 0.030853 | 0.027524 | 0.030033 | 0.027092 | 0.026312 |
Element | HQ (C1) | HQ (C2) | HQ (C3) | HQ (C4) | HQ (C5) |
---|---|---|---|---|---|
As | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ba | — | — | — | — | — |
Ca | — | — | — | — | — |
Co | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Cr | 0.00 | 0.00 | 0.00 | 51.29 | 0.00 |
Cu | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
K | — | — | — | — | — |
Mg | — | — | — | — | — |
Mn | 246.58 | 147.96 | 221.96 | 160.27 | 61.64 |
Ni | 0.00 | 0.00 | 0.00 | 29.59 | 0.00 |
P | 5.00 × 106 | 4.82 × 106 | 5.52 × 106 | 5.22 × 106 | 4.70 × 106 |
Pb | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
S | — | — | — | — | — |
Se | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Zn | 4.73 | 0.00 | 0.00 | 0.00 | 0.00 |
HI | 5,000,251.31 | 4,820,147.96 | 5,520,221.96 | 5,220,241.15 | 4,700,061.64 |
Element | HQ (C1) | HQ (C2) | HQ (C3) | HQ (C4) | HQ (C5) |
---|---|---|---|---|---|
As | 153,200 | 146,933 | 16,423 | 17,433 | 18,213 |
Ba | — | — | — | — | — |
Ca | — | — | — | — | — |
Co | 150 | 98.5 | 73.68 | 87.6 | 141.88 |
Cr | 9.18 | 7.74 | 7.57 | 7.87 | 7.68 |
Cu | 8.95 | 7.47 | 7.48 | 8.75 | 7.79 |
K | — | — | — | — | — |
Mg | — | — | — | — | — |
Mn | 301.11 | 164.53 | 129.83 | 140.22 | 181.74 |
Ni | 58.75 | 49.11 | 45.52 | 28.65 | 35.55 |
P | 2100 | 1053 | 1271 | 1561 | 1629 |
S | — | — | — | — | — |
Se | 7.20 | 5.22 | 6.30 | 6.23 | 7.04 |
Zn | 0.44 | 0.32 | 0.34 | 0.31 | 0.30 |
Pb | 1.78 | 1.25 | 1.42 | 1.39 | 1.41 |
HI | 157,837.42 | 148,820.14 | 16,858.57 | 19,275.72 | 20,025.39 |
Collection | ILCRdermal/Water | ILCRdermal/Soil | ILCRtotal |
---|---|---|---|
C1 | 0.0078257 | 0.010248 | 0.0180737 |
C2 | 0.0081047 | 0.007966 | 0.0160707 |
C3 | 0.0081158 | 0.007784 | 0.0158998 |
C4 | 0.0080813 | 0.008318 | 0.0163993 |
C5 | 0.0079569 | 0.008959 | 0.0169159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espindola, P.R.; Melo, E.S.d.P.; Espindola, D.A.L.F.; Garcia, D.A.Z.; Ancel, M.A.P.; Pott, A.; Nascimento, V.A.d. Assessment of Metal(loid)s in Fern Amauropelta rivularioides (Fee), Soil, and River Water in a Peri-Urban Agriculture Area on the Brazil–Paraguay Border. Urban Sci. 2025, 9, 324. https://doi.org/10.3390/urbansci9080324
Espindola PR, Melo ESdP, Espindola DALF, Garcia DAZ, Ancel MAP, Pott A, Nascimento VAd. Assessment of Metal(loid)s in Fern Amauropelta rivularioides (Fee), Soil, and River Water in a Peri-Urban Agriculture Area on the Brazil–Paraguay Border. Urban Science. 2025; 9(8):324. https://doi.org/10.3390/urbansci9080324
Chicago/Turabian StyleEspindola, Paulo Renato, Elaine Silva de Pádua Melo, Duani A. L. F. Espindola, Diego Azevedo Zoccal Garcia, Marta Aratuza Pereira Ancel, Arnildo Pott, and Valter Aragão do Nascimento. 2025. "Assessment of Metal(loid)s in Fern Amauropelta rivularioides (Fee), Soil, and River Water in a Peri-Urban Agriculture Area on the Brazil–Paraguay Border" Urban Science 9, no. 8: 324. https://doi.org/10.3390/urbansci9080324
APA StyleEspindola, P. R., Melo, E. S. d. P., Espindola, D. A. L. F., Garcia, D. A. Z., Ancel, M. A. P., Pott, A., & Nascimento, V. A. d. (2025). Assessment of Metal(loid)s in Fern Amauropelta rivularioides (Fee), Soil, and River Water in a Peri-Urban Agriculture Area on the Brazil–Paraguay Border. Urban Science, 9(8), 324. https://doi.org/10.3390/urbansci9080324