Investigating Travel Mode Choices Under Environmental Stress: Evidence from Air Pollution Events in Chiang Rai, Thailand
Abstract
1. Introduction
2. Literature Review
2.1. Air Pollution and PM2.5 Smog Impact on Travel Behavior
2.2. Commuting Preference Analysis Methods
3. Methodology
3.1. Study Area
3.2. Data Collection
3.3. Survey Instruments
3.4. Analysis Method
4. Results
4.1. Demographic Characteristics of Respondents
4.2. Analysis of Travel Distributions
4.2.1. Travel Time Distributions
4.2.2. Travel Cost Distribution
4.2.3. Travel Frequency Changes
4.2.4. Travel Distance Changes
4.2.5. Travel Mode Distributions
4.3. Mode Choice for Non-Air Quality Crisis (N-AQC)
4.3.1. Likelihood Ratio Tests and Collinearity Matrix (N-AQC)
4.3.2. Multinomial Logit Model Parameter Estimates and Utility Function (N-AQC)
4.3.3. Model Fitting and Predictive Accuracy of Non-Air Quality Crisis Model (N-AQC)
4.4. Mode Choice for Air Quality Crisis (AQC)
4.4.1. Likelihood Ratio Tests and Collinearity Matrix (AQC)
4.4.2. Multinomial Logit Model Parameter Estimates and Utility Function (AQC)
4.4.3. Model Fitting and Predictive Accuracy of Air Quality Crisis Model (AQC)
4.5. The Predicted Probabilities of Transportation Mode
5. Discussion
5.1. Key Finding
5.2. Policy Implication
5.2.1. Low-Emission Public Transport Fleet Transition
5.2.2. Integrated Air Quality Monitoring and Transportation Information System
5.2.3. Financial Support Mechanisms for Sustainable Mode Shifts
5.2.4. Active Transportation Infrastructure with Air Pollution Protection
5.3. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Zhou, M. The Built Environment and Travel Behavior in Urban China: A Literature Review. Transp. Res. D Transp. Environ. 2017, 52, 574–585. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Air Pollution in Asia and the Pacific: Science-Based Solutions; UNEP: Nairobi, Kenya, 2019; ISBN 9789280737257. [Google Scholar]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-Year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Reid, J.S.; Hyer, E.J.; Johnson, R.S.; Holben, B.N.; Yokelson, R.J.; Zhang, J.; Campbell, J.R.; Christopher, S.A.; Di Girolamo, L.; Giglio, L.; et al. Observing and Understanding the Southeast Asian Aerosol System by Remote Sensing: An Initial Review and Analysis for the Seven Southeast Asian Studies (7SEAS) Program. Atmos. Res. 2013, 122, 403–468. [Google Scholar] [CrossRef]
- Phosri, A.; Ueda, K.; Phung, V.L.H.; Tawatsupa, B.; Honda, A.; Takano, H. Effects of Ambient Air Pollution on Daily Hospital Admissions for Respiratory and Cardiovascular Diseases in Bangkok, Thailand. Sci. Total Environ. 2019, 651, 1144–1153. [Google Scholar] [CrossRef]
- Pimonsree, S.; Vongruang, P. Impact of Biomass Burning and Its Control on Particulate Matter over a City in Mainland Southeast Asia during a Smog Episode. Atmos. Environ. 2018, 195, 196–209. [Google Scholar] [CrossRef]
- Pollution Control Department Thailand State of Pollution Report 2022. Available online: https://www.pcd.go.th/ebook/book17/Pollutiin.html (accessed on 4 November 2024).
- Phopluechai, R.; Arreeras, T.; Jia, X.; Phonsitthangkun, S.; Arreeras, S.; Prommakhot, S. Examining Factors Affected to Travel Decision During Air Pollution Crisis in Chiang Rai Using Exploratory Factor Analysis. In Proceedings of the 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Manama, Bahrain, 28–29 January 2024; pp. 1602–1606. [Google Scholar]
- Long, J.S.; Freese, J. Regression Models for Categorical Dependent Variables Using STATA; Stata Press: College Station, TX, USA, 2001; Volume 7. [Google Scholar]
- Withers, S.D. Categorical Data Analysis. In International Encyclopedia of Human Geography: Volume 1–12; Elsevier: Amsterdam, The Netherlands, 2009; Volume 1–12, pp. V1-456–V1-462. ISBN 9780080449104. [Google Scholar]
- Pojani, D.; Stead, D. Sustainable Urban Transport in the Developing World: Beyond Megacities. Sustainability 2015, 7, 7784–7805. [Google Scholar] [CrossRef]
- Tian, G.; Ewing, R.; White, A.; Hamidi, S.; Walters, J.; Goates, J.P.; Joyce, A. Traffic Generated by Mixed-Use Developments: Thirteen-Region Study Using Consistent Measures of Built Environment. Transp. Res. Rec. 2015, 2500, 116–124. [Google Scholar] [CrossRef]
- Tainio, M.; de Nazelle, A.J.; Götschi, T.; Kahlmeier, S.; Rojas-Rueda, D.; Nieuwenhuijsen, M.J.; de Sá, T.H.; Kelly, P.; Woodcock, J. Can Air Pollution Negate the Health Benefits of Cycling and Walking? Prev. Med. 2016, 87, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Pangderm, C.; Arreeras, T.; Jia, X. Modeling School Commuting Mode Choice Under Normal and Adverse Weather Conditions in Chiang Rai City. Future Transp. 2025, 5, 101. [Google Scholar] [CrossRef]
- Meena, K.K.; Taneja, R.; Agarwal, A. Impact of Air Pollution on Informed Decision-Making for Choice of a Travel Mode. In Proceedings of the 2024 16th International Conference on Communication Systems and Networks, Comsnets 2024, Bengaluru, India, 3–7 January 2024. [Google Scholar]
- Li, W.; Kamargianni, M. Air Pollution and Seasonality Effects on Mode Choice in China. Transp. Res. Rec. 2017, 2634, 101–109. [Google Scholar] [CrossRef]
- Luo, R.; Fan, Y.; Yang, X.; Zhao, J.; Zheng, S. The Impact of Social Externality Information on Fostering Sustainable Travel Mode Choice: A Behavioral Experiment in Zhengzhou, China. Transp. Res. Part A Policy Pract. 2021, 152, 127–145. [Google Scholar] [CrossRef]
- Kim, S.; Ko, Y.; Jang, K. Air Pollution, Perceived Health Risk, and Trip Decision-Making: Environmental Justice Considerations. Cities 2024, 149, 104949. [Google Scholar] [CrossRef]
- Kim, S.; Ko, Y.; Jang, K. Role of Income on Travel Behavior in Polluted Air. J. Transp. Health 2023, 33, 101705. [Google Scholar] [CrossRef]
- Dabirinejad, S.; Habibian, M.; Khorsandi, B. Exploring Impacts of Perceived and Actual Air Pollution on Commuters’ Mode Choice. Transp. Res. D Transp. Environ. 2024, 135, 104359. [Google Scholar] [CrossRef]
- Ercan, T.; Onat, N.C.; Keya, N.; Tatari, O.; Eluru, N.; Kucukvar, M. Autonomous Electric Vehicles Can Reduce Carbon Emissions and Air Pollution in Cities. Transp. Res. D Transp. Environ. 2022, 112, 103472. [Google Scholar] [CrossRef]
- Meena, K.K.; Bairwa, D.; Agarwal, A. A Machine Learning Approach for Unraveling the Influence of Air Quality Awareness on Travel Behavior. Decis. Anal. J. 2024, 11, 100459. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S.; Li, P.; Liu, J.; Long, K. How Does Air Pollution Influence Cycling Behaviour? Evidence from Beijing. Transp. Res. D Transp. Environ. 2018, 63, 826–838. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Chang, X.; Huang, W. How Does Air Pollution Affect Travel Behavior? A Big Data Field Study. Transp. Res. D Transp. Environ. 2021, 99, 103007. [Google Scholar] [CrossRef]
- Ben-Akiva, M.E.; Lerman, S.R. Discrete Choice Analysis: Theory and Application to Travel Demand; MIT Press: Cambridge, MA, USA, 1985; Volume 9, ISBN 0262022176. [Google Scholar]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis: A Primer. Applied Choice Analysis; Cambridge University Press: Cambridge, UK, 2015; ISBN 131630034X. [Google Scholar]
- Bhat, C.R. A Multi-Level Cross-Classified Model for Discrete Response Variables. Transp. Res. Part B Methodol. 2000, 34, 567–582. [Google Scholar] [CrossRef]
- Hagenauer, J.; Helbich, M. A Comparative Study of Machine Learning Classifiers for Modeling Travel Mode Choice. Expert Syst. Appl. 2017, 78, 273–282. [Google Scholar] [CrossRef]
- De Vos, J.; Schwanen, T.; van Acker, V.; Witlox, F. Travel and Subjective Well-Being: A Focus on Findings, Methods and Future Research Needs. Transp. Rev. 2013, 33, 421–442. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Purevjav, A.O.; Yang, L. Does Subway Expansion Improve Air Quality? J. Environ. Econ. Manag. 2019, 96, 213–235. [Google Scholar] [CrossRef]
- National Statistical Office of Thailand Population and Housing Census 2024. Available online: https://chiangrai.nso.go.th/reports-publications/provincial-statistics-report/chiang-rai-province-statistical-report.html (accessed on 4 November 2024).
- Pollution Control Department Air Quality and Noise Management Bureau Annual Report 2023. Available online: https://www.pcd.go.th/publication/33068/ (accessed on 4 November 2024).
- Yamane, T. Statistics: An Introductory Analysis; Harper and Row: New York, NY, USA, 1973. [Google Scholar]
- Abdullah, M.; Dias, C.; Muley, D.; Shahin, M. Exploring the Impacts of COVID-19 on Travel Behavior and Mode Preferences. Transp. Res. Interdiscip. Perspect. 2020, 8, 100255. [Google Scholar] [CrossRef]
- Chansuk, C.; Arreeras, T.; Chiangboon, C.; Phonmakham, K.; Chotikool, N.; Buddee, R.; Pumjampa, S.; Yanasoi, T.; Arreeras, S. Using Factor Analyses to Understand the Post-Pandemic Travel Behavior in Domestic Tourism through a Questionnaire Survey. Transp. Res. Interdiscip. Perspect. 2022, 16, 100691. [Google Scholar] [CrossRef]
- Rahman, M.L.; Baker, D. Modelling Induced Mode Switch Behaviour in Bangladesh: A Multinomial Logistic Regression Approach. Transp. Policy 2018, 71, 81–91. [Google Scholar] [CrossRef]
- van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–7. [Google Scholar] [CrossRef]
- Arreeras, T.; Chongutsah, S.; Asada, T.; Arimura, M. Factors Affecting Mode Choice in Accessing Railway Station Study in Nakhon Ratchasima. Transp. Res. Procedia 2020, 48, 3457–3468. [Google Scholar] [CrossRef]
- Liu, C.; Susilo, Y.O.; Karlström, A. The Influence of Weather Characteristics Variability on Individual’s Travel Mode Choice in Different Seasons and Regions in Sweden. Transp. Policy 2015, 41, 147–158. [Google Scholar] [CrossRef]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior; Scholarly Communication & Information Policy University of California Berkeley Library: Berkeley, CA, USA, 1972. [Google Scholar]
- Co, N.J.S.; Dimaculangan, K.F.; Peralta, M.H.T. Effects of Covid-19 Pandemic on Mode Choice Behavior of Working Filipinos in Metro Manila. Asian Transp. Stud. 2023, 9, 100101. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression: Third Edition; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Menard, S. Logistic Regression: From Introductory to Advanced Concepts and Applications; Sage: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2009; ISBN 1139480375. [Google Scholar]
- Washington, S.; Karlaftis, M.G.; Mannering, F.; Anastasopoulos, P. Statistical and Econometric Methods for Transportation Data Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020; ISBN 0429244010. [Google Scholar]
- Greene, W.H. The Econometric Approach to Efficiency Analysis. In The Measurement of Productive Efficiency and Productivity Growth; Fried, H.O., Knox Lovell, C.A., Schmidt, S.S., Eds.; Oxford Academic: Oxford, UK, 2008; pp. 92–250. [Google Scholar]
- Louviere, J.J.; Hensher, D.A.; Swait, J.D. Stated Choice Methods: Analysis and Applications. Cambridge University Press: Cambridge, UK, 2000; ISBN 1107717515. [Google Scholar]
- Gaudry, M.; Domencich, T.A.; McFadden, D. Urban Travel Demand: A Behavioral Analysis. Can. J. Econ. 1977, 10, 724. [Google Scholar] [CrossRef]
- de Dios Ortúzar, J.; Willumsen, L.G. Modelling Transport; Wiley: Hoboken, NJ, USA, 2011; ISBN 9781119993520. [Google Scholar]
- Gärling, T.; Fujii, S. Travel Behavior Modification: Theories, Methods, and Programs. In The Expanding Sphere of Travel Behaviour Research; Emerald: Leeds, UK, 2009; pp. 97–128. [Google Scholar]
- Buehler, R.; Pucher, J. Demand for Public Transport in Germany and the USA: An Analysis of Rider Characteristics. Transp. Rev. 2012, 32, 541–567. [Google Scholar] [CrossRef]
- United Nations. The 17 Sustainable Development Goals (SDGs). Available online: https://sdgs.un.org/goals (accessed on 12 February 2025).
- Dhar, S.; Pathak, M.; Shukla, P.R. Electric Vehicles and India’s Low Carbon Passenger Transport: A Long-Term Co-Benefits Assessment. J. Clean. Prod. 2017, 146, 139–148. [Google Scholar] [CrossRef]
- Yin, H.; Pizzol, M.; Xu, L. External Costs of PM2.5 Pollution in Beijing, China: Uncertainty Analysis of Multiple Health Impacts and Costs. Environ. Pollut. 2017, 226, 356–369. [Google Scholar] [CrossRef]
- Liu, T.; He, G.; Lau, A. Avoidance Behavior against Air Pollution: Evidence from Online Search Indices for Anti-PM2.5 Masks and Air Filters in Chinese Cities. Environ. Econ. Policy Stud. 2018, 20, 325–363. [Google Scholar] [CrossRef]
- Shi, X. The Future of ASEAN Energy Mix: A SWOT Analysis. Renew. Sustain. Energy Rev. 2016, 53, 672–680. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P. Field Investigations for Evaluating Green Infrastructure Effects on Air Quality in Open-Road Conditions. Atmos. Environ. 2019, 201, 132–147. [Google Scholar] [CrossRef]
Reference | Pollution Type | Location | Method Used | Mode of Transport | Finding |
---|---|---|---|---|---|
Li and Kamargianni [17] | Air pollution | Taiyuan, China | Mode choice models | Motorized and Non-motorized vehicles | Air pollution negatively impacts non-motorized transport mode choice. |
Zhao et al. [24] | Air pollution, PM2.5 | Beijing, China | Binary logit model | Cycle, cars, taxis, buses, metros, and walking | Air quality significantly influences travel mode choices. |
Luo et al. [18] | Air pollution, PM2.5 | Zhengzhou, China | Multinomial logit model (MNL) and difference-in-difference (DID) regression methods | Car, public transit, and active modes | Car commuters rebound towards car travel after health information. |
Xu et al. [25] | Ambient air pollution | Xi’an, China | Regression model | N/A | People reduce travel area more than travel distance on polluted days. |
Ercan et al. [22] | Emissions (CO, CO2, NOX, SOX, PM10, PM2.5, and VOCs) | 929 urban areas in the U.S. | Multinomial logit model (MNL) and system dynamics (SD) modeling | Drive alone, carpool, public transportation, walk, and other | Vehicle ownership significantly impacts transportation mode choices. |
Kim et al. [20] | Air pollution | Seoul, South Korea | Multilevel logistic regression modeling | Non-motorized modes (walking or biking), public transit (bus or subway), and cars | Lower-income groups shift to public transit during poor air quality. |
Meena et al. [16] | Air pollution | Delhi, India | Machine learning models and logit model | Open and closed travel modes | Commuters prefer closed modes as air quality worsens. |
Dabirinejad et al. [21] | Air pollution | Karaj, Iran | Exploratory factor analysis (EFA) and hybrid choice modeling (HCM) | Walking, car, and public transit | Poor air quality increases private car usage. |
Kim et al. [19] | Particulate matter (PM) | Seoul, South Korea | Integrated Choice and Latent Variable (ICLV) model | Public transit | Public transit usage increases among lower-income groups during pollution events. |
Meena et al. [23] | Air pollution | Delhi, India | Random Forest, XGBoost, Naive Bayes (NB), K-Nearest Neighbor, Support Vector Machine (SVM), and Multinomial logit model (MNL) | Auto rickshaw, bus, car, two-wheeler, two-wheeler sharing, walk, bicycle, car sharing, and metro | Commuters shift to closed modes during poor air quality. |
Present study | Air pollution, PM2.5 | Chiang Rai, Thailand | Descriptive statistic and Multinomial logit model (MNL), | Private car, motorcycle, public transport, and alternatives | Travel mode choice during non-air quality crisis and air quality crisis in urban area |
Item | Value: Description | Count | Percent |
---|---|---|---|
Total of respondents | 406 | 100 | |
Gender | 1: Male | 127 | 31.3 |
2: Female | 259 | 63.8 | |
3: Others | 20 | 4.9 | |
Age (years) | 1: <21 | 109 | 26.8 |
2: 21–30 | 240 | 59.1 | |
3: 31–40 | 22 | 5.4 | |
4: 41–50 | 25 | 6.2 | |
5: 51–60 | 10 | 2.5 | |
Monthly income (THB) | 1: <10,000 | 219 | 53.9 |
2: 10,001–15,000 | 38 | 9.4 | |
3: 15,000–20,000 | 82 | 20.2 | |
4: 20,001–30,000 | 37 | 9.1 | |
5: 30,001–40,000 | 11 | 2.7 | |
6: 40,001–50,000 | 8 | 2.0 | |
7: >50,001 | 11 | 2.7 | |
Marital status | 1: Unmarried | 339 | 83.5 |
2: Married | 37 | 9.1 | |
3: Not mentioned | 30 | 7.4 | |
Vehicle ownership | 0: No | 72 | 17.7 |
1: Yes | 334 | 82.3 | |
Holding motorcycle driving license | 0: No | 177 | 43.6 |
1: Yes | 229 | 56.4 | |
Holding private car driving license | 0: No | 241 | 59.4 |
1: Yes | 165 | 40.6 |
Travel Mode | Percentage | |
---|---|---|
N-AQC | AQC | |
Private car | 30.30 | 34.70 |
Motorcycle | 50.20 | 42.90 |
Public transport | 13.10 | 8.60 |
Alternatives | 6.40 | 13.80 |
Effect | Chi-Square | df | Sig. |
---|---|---|---|
Intercept | 15.011 | 3 | 0.002 ** |
Gender | 13.772 | 3 | 0.003 ** |
Age | 11.660 | 3 | 0.009 ** |
Monthly income | 17.954 | 3 | <0.000 *** |
Marital status | 8.407 | 3 | 0.038 * |
Vehicle ownership | 24.308 | 3 | <0.000 *** |
Holding a motorcycle driving license | 31.509 | 3 | <0.000 *** |
Holding a private car driving license | 36.885 | 3 | <0.000 *** |
Effect on healthcare | 16.341 | 3 | 0.001 ** |
Effect on finance | 9.509 | 3 | 0.023 * |
Travel time | 16.703 | 3 | 0.001 ** |
Travel cost | 20.630 | 3 | <0.000 *** |
- | |||||||||||
−0.112 | - | ||||||||||
−0.149 | 0.562 | - | |||||||||
−0.075 | 0.177 | 0.074 | - | ||||||||
−0.107 | 0.180 | 0.119 | −0.076 | - | |||||||
−0.043 | 0.072 | 0.048 | −0.023 | 0.294 | - | ||||||
−0.153 | 0.360 | 0.411 | 0.005 | 0.187 | 0.111 | - | |||||
0.109 | 0.066 | 0.040 | −0.081 | −0.046 | 0.028 | 0.053 | - | ||||
0.034 | 0.000 | −0.027 | −0.004 | −0.084 | 0.031 | −0.048 | 0.185 | - | |||
−0.068 | 0.189 | 0.126 | 0.023 | 0.051 | 0.015 | 0.196 | −0.009 | −0.066 | - | ||
−0.072 | 0.202 | 0.214 | 0.047 | 0.076 | −0.058 | 0.185 | −0.002 | −0.073 | 0.462 | - |
Mode | Variable | Coef. | Sig. | Odds Ratio |
---|---|---|---|---|
Motorcycle | Intercept | 2.832 | 0.002 ** | |
Gender ) | 0.019 | 0.944 | 1.019 | |
Age ) | 0.058 | 0.780 | 1.059 | |
Monthly income ) | −0.454 | *** | 0.635 | |
Marital status ) | −0.475 | 0.046 * | 0.622 | |
Vehicle ownership ) | −0.331 | 0.474 | 0.718 | |
Holding motorcycle driving license ) | 1.252 | *** | 3.496 | |
Holding private car driving license ) | −1.776 | *** | 0.169 | |
Effect on healthcare ) | 0.867 | 0.047 * | 2.379 | |
Effect on finance ) | 0.180 | 0.588 | 1.197 | |
Travel time ) | −0.097 | 0.344 | 0.907 | |
Travel cost ) | −0.477 | *** | 0.621 | |
Public transport | Intercept | −0.375 | 0.746 | |
) | 1.248 | 0.001 ** | 3.485 | |
) | 0.857 | 0.002 ** | 2.356 | |
) | −0.475 | 0.005 ** | 0.622 | |
) | −0.681 | 0.048 * | 0.506 | |
) | −2.045 | *** | 0.129 | |
) | −0.392 | 0.355 | 0.676 | |
) | −1.346 | 0.003 ** | 0.260 | |
) | −1.030 | 0.067 | 0.357 | |
) | 1.200 | 0.006 ** | 3.321 | |
) | 0.388 | 0.003 ** | 1.474 | |
) | −0.427 | 0.025 * | 0.652 | |
Alternatives | Intercept | 1.396 | 0.335 | |
) | 0.431 | 0.381 | 1.539 | |
) | 0.452 | 0.206 | 1.572 | |
) | −0.236 | 0.210 | 0.790 | |
) | −1.111 | 0.039 * | 0.329 | |
) | −1.797 | 0.003 ** | 0.166 | |
) | −0.457 | 0.395 | 0.633 | |
) | −2.045 | 0.001 ** | 0.129 | |
) | −1.056 | 0.093 | 0.348 | |
) | 0.869 | 0.108 | 2.386 | |
) | 0.027 | 0.868 | 1.027 | |
) | 0.141 | 0.481 | 1.152 |
Model Info | Model Fitting Criteria | Likelihood Ratio Tests | Goodness-of-Fit | Pseudo R-Square |
---|---|---|---|---|
Model (N-AQC) | AIC: 939.296 (Intercept) 746.099 (Final) | Chi-Square: 259.197 df: 33 Sig.: 0.000 *** | Pearson Chi-Square: 1306.169 df: 1182 p = 0.007 | Cox and Snell: 0.472 Nagelkerke: 0.525 McFadden: 0.278 |
BIC: 951.316 (Intercept) 890.328 (Final) | Deviance: 674.099 df: 1182 p = 1.000 | |||
−2 Log Likelihood: 933.296 (Intercept) 674.099 (Final) |
Classification | |||||
---|---|---|---|---|---|
Observed | Private Car | Motorcycle | Public Transport | Alternatives | Percent Correct |
Private car | 81 | 38 | 2 | 2 | 65.90% |
Motorcycle | 24 | 170 | 10 | 0 | 83.30% |
Public transport | 7 | 26 | 19 | 1 | 35.80% |
Alternatives | 6 | 12 | 4 | 4 | 15.40% |
Overall Percentage | 29.10% | 60.60% | 8.60% | 1.70% | 67.50% |
Effect | Chi-Square | df | Sig. |
---|---|---|---|
Intercept | 22.067 | 3 | <0.000 *** |
Monthly income | 16.396 | 3 | <0.000 *** |
Vehicle ownership | 19.720 | 3 | <0.000 *** |
Holding motorcycle driving license | 18.502 | 3 | <0.000 *** |
Holding private car driving license | 42.441 | 3 | <0.000 *** |
Effect on finance | 11.451 | 3 | 0.010 * |
Travel time | 28.396 | 3 | <0.000 *** |
Travel cost | 17.775 | 3 | <0.000 *** |
Travel frequency | 41.544 | 3 | <0.000 *** |
- | ||||||||
0.119 | - | |||||||
0.048 | 0.294 | - | ||||||
0.411 | 0.187 | 0.111 | - | |||||
−0.027 | −0.084 | 0.031 | −0.048 | - | ||||
0.161 | 0.114 | 0.074 | 0.215 | −0.102 | - | |||
0.215 | 0.079 | −0.041 | 0.177 | −0.068 | 0.559 | - | ||
0.161 | 0.224 | 0.112 | 0.154 | −0.018 | 0.264 | 0.140 | - |
Mode | Variable | Coef. | Sig. | Odds Ratio |
---|---|---|---|---|
Motorcycle | Intercept | 1.814 | 0.002 ** | |
) | −0.386 | *** | 0.680 | |
) | 0.352 | 0.422 | 1.423 | |
) | 1.087 | *** | 2.967 | |
) | −1.886 | *** | 0.152 | |
) | 0.540 | 0.097 | 1.715 | |
) | −0.326 | 0.002 ** | 0.722 | |
) | −0.282 | 0.041 * | 0.755 | |
) | 0.147 | 0.252 | 1.158 | |
Public transport | Intercept | 1.539 | 0.039 * | |
) | −0.400 | 0.040 * | 0.670 | |
) | −1.318 | 0.010 * | 0.268 | |
) | −0.315 | 0.511 | 0.730 | |
) | −1.398 | 0.006 ** | 0.247 | |
) | 1.304 | 0.005 ** | 3.685 | |
) | 0.337 | 0.025 * | 1.400 | |
) | −0.226 | 0.283 | 0.797 | |
) | −0.413 | 0.036 * | 0.662 | |
Alternatives | Intercept | 2.798 | *** | |
) | −0.058 | 0.652 | 0.944 | |
) | −1.159 | 0.011 * | 0.314 | |
) | 0.086 | 0.828 | 1.090 | |
) | −1.101 | 0.009 ** | 0.332 | |
) | 1.109 | 0.006 ** | 3.030 | |
) | −0.384 | 0.012 * | 0.681 | |
) | 0.418 | 0.015 * | 1.520 | |
) | −0.849 | *** | 0.428 |
Model Info | Model Fitting Criteria | Likelihood Ratio Tests | Goodness-of-Fit | Pseudo R-Square |
---|---|---|---|---|
Model (AQC) | AIC: 967.119 (Intercept) 745.348 (Final) | Chi-Square: 269.771 df: 24 Sig.: 0.000 *** | Pearson Chi-Square: 1054.790 df: 1047 p = 0.427 | Cox and Snell: 0.485 Nagelkerke: 0.532 McFadden: 0.273 |
BIC: 979.138 (Intercept) 853.520 (Final) | Deviance: 669.272 df: 1047 p = 1.000 | |||
−2 Log Likelihood: 961.119 (Intercept) 691.348 (Final) |
Classification | |||||
---|---|---|---|---|---|
Observed | Private Car | Motorcycle | Public Transport | Alternatives | Percent Correct |
Private car | 91 | 37 | 4 | 9 | 64.50% |
Motorcycle | 24 | 141 | 2 | 7 | 81.00% |
Public transport | 8 | 13 | 6 | 8 | 17.10% |
Alternatives | 10 | 23 | 2 | 21 | 37.50% |
Overall Percentage | 32.80% | 52.70% | 3.40% | 11.10% | 63.80% |
Variable | Significance in N-AQC Model | Significance in AQC Model | Interpretation |
---|---|---|---|
Gender | ¡ | Significant only during non-air quality crisis | |
Age | ¡ | Relevant for mode choice only in non-air quality crisis | |
Monthly income | ¡ | ¡ | Key factor influencing mode choice in both periods |
Marital status | ¡ | Only significant under non-air quality crisis | |
Vehicle ownership | ¡ | ¡ | Consistently significant; access to a vehicle strongly affects mode selection |
Holding motorcycle driving license | ¡ | ¡ | Strong predictor for motorcycle use in both periods |
Holding private car driving license | ¡ | ¡ | Influences private car and alternative mode decisions in both periods |
Effect on healthcare | ¡ | Perceived health impact mattered only during non-air quality crisis | |
Effect on finance | ¡ | ¡ | Financial concern significantly affects decisions in both scenarios |
Travel time | ¡ | ¡ | Travel duration influences choice across both periods |
Travel cost | ¡ | ¡ | Cost remains a significant determinant under all air quality conditions |
Travel frequency | ¡ | Becomes significant only during air quality crisis, indicating crisis-driven behavior change |
Private Car | Motorcycle | Public Transport | Alternatives | |
---|---|---|---|---|
Gender | ||||
Male | 32 | 60 | 4 | 4 |
Female | 28 | 54 | 12 | 6 |
Others | 21 | 41 | 32 | 7 |
Age (years) | ||||
<21 | 33 | 59 | 4 | 4 |
21–30 | 29 | 56 | 9 | 5 |
31–40 | 24 | 50 | 19 | 7 |
41–50 | 18 | 40 | 33 | 8 |
51–60 | 12 | 28 | 51 | 9 |
Monthly income (THB) | ||||
<10,000 | 20 | 64 | 11 | 5 |
10,001–15,000 | 28 | 57 | 10 | 5 |
15,000–20,000 | 38 | 49 | 8 | 6 |
20,001–30,000 | 48 | 40 | 6 | 6 |
30,001–40,000 | 59 | 31 | 5 | 5 |
40,001–50,000 | 69 | 23 | 3 | 5 |
>50,001 | 77 | 16 | 2 | 4 |
Marital status | ||||
Unmarried | 27 | 57 | 10 | 6 |
Married | 38 | 51 | 7 | 3 |
Not mentioned | 51 | 43 | 5 | 1 |
Vehicle ownership | ||||
No | 17 | 42 | 28 | 13 |
Yes | 32 | 57 | 7 | 4 |
Holding motorcycle driving license | ||||
No | 39 | 37 | 15 | 9 |
Yes | 21 | 70 | 6 | 3 |
Holding private car driving license | ||||
No | 17 | 67 | 9 | 7 |
Yes | 53 | 36 | 8 | 3 |
Effect on healthcare | ||||
No | 32 | 29 | 25 | 15 |
Yes | 28 | 60 | 8 | 4 |
Effect on finance | ||||
No | 31 | 57 | 7 | 4 |
Yes | 23 | 51 | 18 | 8 |
Travel time (Minutes) | ||||
<10 | 28 | 63 | 4 | 5 |
10–20 | 29 | 60 | 7 | 5 |
21–30 | 29 | 56 | 10 | 5 |
31–40 | 29 | 51 | 15 | 6 |
41–50 | 29 | 45 | 21 | 6 |
51–60 | 27 | 38 | 29 | 5 |
>60 | 25 | 32 | 39 | 5 |
Travel cost (THB) | ||||
<50 | 20 | 66 | 10 | 3 |
50–100 | 29 | 57 | 9 | 5 |
101–150 | 38 | 47 | 8 | 8 |
151–200 | 47 | 36 | 7 | 11 |
>200 | 54 | 26 | 5 | 15 |
Private Car | Motorcycle | Public Transport | Alternatives | |
---|---|---|---|---|
Monthly income (THB) | ||||
<10,000 | 29 | 54 | 8 | 8 |
10,001–15,000 | 36 | 47 | 7 | 10 |
15,000–20,000 | 44 | 39 | 6 | 12 |
20,001–30,000 | 52 | 31 | 5 | 13 |
30,001–40,000 | 59 | 24 | 4 | 14 |
40,001–50,000 | 65 | 18 | 3 | 14 |
>50,001 | 70 | 13 | 2 | 15 |
Vehicle ownership | ||||
No | 32 | 29 | 17 | 22 |
Yes | 37 | 49 | 6 | 8 |
Holding motorcycle driving license | ||||
No | 47 | 31 | 10 | 12 |
Yes | 29 | 58 | 5 | 8 |
Holding private car driving license | ||||
No | 23 | 60 | 8 | 10 |
Yes | 62 | 25 | 5 | 9 |
Effect on finance | ||||
No | 42 | 44 | 5 | 8 |
Yes | 26 | 46 | 12 | 16 |
Travel time (Minutes) | ||||
<10 | 26 | 57 | 3 | 14 |
10–20 | 32 | 51 | 5 | 12 |
21–30 | 38 | 44 | 8 | 10 |
31–40 | 44 | 36 | 12 | 8 |
Travel time (Minutes) | ||||
41–50 | 47 | 28 | 18 | 6 |
51–60 | 49 | 21 | 26 | 4 |
>60 | 47 | 15 | 36 | 3 |
Travel cost (THB) | ||||
<50 | 32 | 55 | 8 | 5 |
50–100 | 36 | 47 | 7 | 9 |
101–150 | 40 | 39 | 6 | 15 |
151–200 | 41 | 30 | 5 | 23 |
>200 | 40 | 22 | 4 | 34 |
Travel frequency (per weeks) | ||||
No travel | 24 | 20 | 11 | 45 |
1 | 32 | 32 | 10 | 26 |
2–3 | 37 | 43 | 8 | 13 |
4–5 | 38 | 51 | 5 | 6 |
6–7 | 51 | 20 | 12 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phopluechai, R.; Arreeras, T.; Jia, X.; Sittivangkul, K.; Thanasupsin, K.; Chaikaew, P. Investigating Travel Mode Choices Under Environmental Stress: Evidence from Air Pollution Events in Chiang Rai, Thailand. Urban Sci. 2025, 9, 323. https://doi.org/10.3390/urbansci9080323
Phopluechai R, Arreeras T, Jia X, Sittivangkul K, Thanasupsin K, Chaikaew P. Investigating Travel Mode Choices Under Environmental Stress: Evidence from Air Pollution Events in Chiang Rai, Thailand. Urban Science. 2025; 9(8):323. https://doi.org/10.3390/urbansci9080323
Chicago/Turabian StylePhopluechai, Ramill, Tosporn Arreeras, Xiaoyan Jia, Krit Sittivangkul, Kittichai Thanasupsin, and Patchareeya Chaikaew. 2025. "Investigating Travel Mode Choices Under Environmental Stress: Evidence from Air Pollution Events in Chiang Rai, Thailand" Urban Science 9, no. 8: 323. https://doi.org/10.3390/urbansci9080323
APA StylePhopluechai, R., Arreeras, T., Jia, X., Sittivangkul, K., Thanasupsin, K., & Chaikaew, P. (2025). Investigating Travel Mode Choices Under Environmental Stress: Evidence from Air Pollution Events in Chiang Rai, Thailand. Urban Science, 9(8), 323. https://doi.org/10.3390/urbansci9080323