Year-Round Activity Patterns of Badgers (Meles meles) and Mesocarnivore Communities in Urban and Sub-Urban Areas
Abstract
1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
2.3.1. Mammal Community
2.3.2. Activity Patterns
3. Results
3.1. Mammal Community
3.2. Activity Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA. Urban Sprawl in Europe—The Ignored Challenge, Report EEA n. 10/2006; European Environment Agency: Copenhagen, Denmark, 2006. [Google Scholar]
- United Nations. World Population Prospects 2024: Summary of Results; UN DESA/POP/2024/TR/NO. 9; United Nations: New York, NY, USA, 2024. [Google Scholar]
- Czech, B.; Krausman, P.R.; Devers, P.K. Economic associations among causes of species endangerment in the United States: Associations among causes of species endangerment in the United States reflect the integration of economic sectors, supporting the theory and evidence that economic growth proceeds at the competitive exclusion of nonhuman species in the aggregate. BioScience 2000, 50, 593–601. [Google Scholar] [CrossRef]
- McDonald, R.I.; Kareiva, P.; Forman, R.T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- Buczkowski, G.; Richmond, D.S. The Effect of Urbanization on Ant Abundance and Diversity: A Temporal Examination of Factors Affecting Biodiversity. PLoS ONE 2012, 7, e41729. [Google Scholar] [CrossRef]
- Ditchkoff, S.S.; Saalfeld, S.T.; Gibson, C.J. Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosyst. 2006, 9, 5–12. [Google Scholar] [CrossRef]
- Lowry, H.; Lill, A.; Wong, B.B. Behavioural responses of wildlife to urban environments. Biol. Rev. 2013, 88, 537–549. [Google Scholar] [CrossRef]
- Gaynor, K.M.; Hojnowski, C.E.; Carter, N.H.; Brashares, J.S. The influence of human disturbance on wildlife nocturnality. Science 2018, 360, 1232–1235. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization, Biodiversity, and Conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human 91 population about these impacts can greatly improve species conservation in all ecosystems. Bioscience 2002, 52, 883–890. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Angold, P.G.; Sadler, J.P.; Hill, M.O.; Pullin, A.; Rushton, S.; Austin, K. Biodiversity in urban habitat patches. Sci. Total Environ. 2006, 360, 196–204. [Google Scholar] [CrossRef]
- Elmqvist, T.; Zipperer, W.; Güneralp, B. Urbanization, habitat loss, biodiversity decline: Solution pathways to break the cycle. In Routledge Handbook of Urbanization and Global Environmental Change; Seta, K., Solecki, W.D., Griffith, C.A., Eds.; Routledge: London, UK, 2016; pp. 139–151. [Google Scholar]
- Ducatez, S.; Sayol, F.; Sol, D.; Lefebvre, L. Are urban vertebrates city specialists, artificial habitat exploiters, or environmental generalists? Integr. Comp. Biol. 2018, 58, 929–938. [Google Scholar] [CrossRef]
- Van Helden, B.E.; Close, P.G.; Steven, R. Mammal conservation in a changing world: Can urban gardens play a role? Urban Ecosyst. 2020, 23, 555–567. [Google Scholar] [CrossRef]
- Gallo, T.; Fidino, M.; Lehrer, E.W.; Magle, S.B. Mammal diversity and metacommunity dynamics in urban green spaces: Implications for urban wildlife conservation. Ecol. Appl. 2017, 27, 2330–2341. [Google Scholar] [CrossRef]
- McCleery, R. Urban mammals. Urban Ecosyst. Ecol. 2010, 55, 87–102. [Google Scholar] [CrossRef]
- Prugh, L.R.; Stoner, C.J.; Epps, C.W.; Bean, W.T.; Ripple, W.J.; Laliberte, A.S.; Brashares, J.S. The rise of the mesopredator. Bioscience 2009, 59, 779–791. [Google Scholar] [CrossRef]
- Crooks, K.R.; Soulé, M.E. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 1999, 400, 563–566. [Google Scholar] [CrossRef]
- Bateman, P.W.; Fleming, P.A. Big city life: Carnivores in urban environments. J. Zool. 2012, 287, 1–23. [Google Scholar] [CrossRef]
- Huck, M.; Davison, J.; Roper, T.J. Predicting European badger Meles meles sett distribution in urban environments. Wildl. Biol. 2008, 14, 188–198. [Google Scholar] [CrossRef]
- Geiger, M.; Taucher, A.L.; Gloor, S.; Hegglin, D.; Bontadina, F. In the footsteps of city foxes: Evidence for a rise of urban badger populations in Switzerland. Hystrix 2018, 29, 236–238. [Google Scholar] [CrossRef]
- Delahay, R.J.; Davison, J.; Poole, D.W.; Matthews, A.J.; Wilson, C.J.; Heydon, M.J.; Roper, T.J. Managing conflict between humans and wildlife: Trends in licensed operations to resolve problems with badgers Meles meles in England. Mammal Rev. 2009, 39, 53–66. [Google Scholar] [CrossRef]
- Shi, H.; Shi, T.; Yang, Z.; Wang, Z.; Han, F.; Wang, C. Effect of roads on ecological corridors used for wildlife movement in a natural heritage site. Sustainability 2018, 10, 2725. [Google Scholar] [CrossRef]
- Herr, J.; Schley, L.; Engel, E.; Roper, T.J. Den preferences and denning behaviour in urban stone martens (Martes foina). MammBio 2010, 75, 138–145. [Google Scholar] [CrossRef]
- George, S.L.; Crooks, K.R. Recreation and large mammal activity in an urban nature reserve. Biol. Conserv. 2006, 133, 107–117. [Google Scholar] [CrossRef]
- Rodríguez, A.; Martin, R.; Delibes, M. Space use and activity in a Mediterranean population of badgers Meles meles. Acta Theriol. 1996, 41, 59–72. [Google Scholar] [CrossRef]
- Goszczyński, J.; Juszko, S.; Pacia, A.; Skoczyńska, J. Activity of badgers (Meles meles) in Central Poland. MammBio 2005, 70, 1–11. [Google Scholar] [CrossRef]
- Kruuk, H.H.; Parish, T. Changes in the size of groups and ranges of the European badger (Meles meles L.) in an area in Scotland. J. Anim. Ecol. 1987, 56, 351–364. [Google Scholar] [CrossRef]
- ISTAT, Istituto Nazionale di Statistica. Demography in Figures. Resident Population; ISTAT, Istituto Nazionale di Statistica: Rome, Italy, 2025. [Google Scholar]
- Barolo, C.; Castelli, L.; Merico, I.; Cardani, P. Guida ai Parchi Cittadini; Bosetti Group: Gorla Maggiore, Italy, 2016; Volume 5. [Google Scholar]
- Gennari, I.; Sportaro, E. Racconto di un Paesaggio Complesso. Percorso Attraverso gli Ambienti della Valle Olona, da Castelseprio al Parco Pineta. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2014. [Google Scholar]
- Corine Land Cover 2018. European Union’s Copernicus Land Monitoring Service Information. Available online: https://land.copernicus.eu/en/products/corine-land-cover/clc2018 (accessed on 30 May 2025).
- Gaughran, A.; Kelly, D.J.; MacWhite, T.; Mullen, E.; Maher, P.; Good, M.; Marples, N.M. Super-ranging. A new ranging strategy in European badgers. PLoS ONE 2018, 13, e0191818. [Google Scholar] [CrossRef]
- Centro Geofisico Prealpino. Statistiche Storiche. Varese. 2025. Available online: https://www.astrogeo.va.it/statistiche/clima.php (accessed on 23 September 2025).
- Kowalczyk, R.; Jȩdrzejewska, B.; Zalewski, A. Annual and circadian activity patterns of badgers (Meles meles) in Białowieża Primeval Forest (eastern Poland) compared with other Palaearctic populations. J. Biogeogr. 2003, 30, 463–472. [Google Scholar] [CrossRef]
- Panebianco, M. Analisi della Presenza degli Ungulati nel Parco Naturale Regionale Campo dei Fiori Attraverso l’applicazione di Modelli di Occupancy. Master’s Thesis, Insubria University, Varese-Como, Italy, 2021–2022. [Google Scholar]
- Gallina, V. Gli Ungulati nel parco Regionale della Pineta di Appiano Gentile e Tradate: Analisi della Presenza e dell’andamento delle Popolazioni. Master’s Thesis, Insubria University, Varese-Como, Italy, 2021–2022. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.r-project.org/ (accessed on 5 June 2025).
- O’Brien, T.G.; Kinnaird, M.F.; Wibisono, H.T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 2003, 6, 131–139. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Meredith, M.; Ridout, M.; Campbell, L.A. Overlap: Estimates of Coefficient of Overlapping for Animal Activity Patterns. 2024. Available online: https://CRAN.R-project.org/package=overlap (accessed on 25 May 2025).
- Ridout, M.S.; Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agr. Biol. Envir. St. 2009, 14, 322–337. [Google Scholar] [CrossRef]
- Cremonesi, G.; Bisi, F.; Gaffi, L.; Zaw, T.; Naing, H.; Moe, K.; Aung, Z.; Gagliardi, A.; Wauters, L.A.; Preatoni, D.G.; et al. Evaluation of human disturbance on the activity of medium-large mammals in Myanmar tropical forests. Forests 2021, 12, 290. [Google Scholar] [CrossRef]
- Meredith, M.; Ridout, M. Overview of the Overlap Package. R. Proj, 1–9. 2014. Available online: https://cran.r-project.org/web/packages/overlap/overlap.pdf (accessed on 26 May 2025).
- Monterroso, P.; Alves, P.C.; Ferreras, P. Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: Implications for species coexistence. Behav. Ecol. Sociobiol. 2014, 68, 1403–1417. [Google Scholar] [CrossRef]
- Batschelet, E. Circular Statistics in Biology; Academic Press: London, UK, 1981. [Google Scholar]
- Pirie, T.J.; Thomas, R.L.; Fellowes, M.D. Pet cats (Felis catus) from urban boundaries use different habitats, have larger home ranges and kill more prey than cats from the suburbs. Landsc. Urban Plan. 2022, 220, 104338. [Google Scholar] [CrossRef]
- Thomas, R.L.; Baker, P.J.; Fellowes, M.D. Ranging characteristics of the domestic cat (Felis catus) in an urban environment. Urban Ecosyst. 2014, 17, 911–921. [Google Scholar] [CrossRef]
- Vantwoudt, B.D. Roaming, stray, and feral domestic cats and dogs as wildlife problems. In Proceedings of the Fourteenth Vertebrate Pest Conference, Sacramento, CA, USA, 6–8 March 1990; Volume 14, pp. 291–295. [Google Scholar]
- Horn, J.A.; Mateus-Pinilla, N.; Warner, R.E.; Heske, E.J. Home range, habitat use, and activity patterns of free-roaming domestic cats. J. Wildl. Manag. 2011, 75, 1177–1185. [Google Scholar] [CrossRef]
- Mori, E.; Menchetti, M.; Balestrieri, A. Interspecific den sharing: A study on European badger setts using camera traps. Acta Ethol. 2015, 18, 121–126. [Google Scholar] [CrossRef]
- Macdonald, D.W.; Buesching, C.D.; Stopka, P.; Henderson, J.; Ellwood, S.A.; Baker, S.E. Encounters between two sympatric carnivores: Red foxes (Vulpes vulpes) and European badgers (Meles meles). J. Zool. 2004, 263, 385–392. [Google Scholar] [CrossRef]
- Mella-Méndez, I.; Flores-Peredo, R.; Pérez-Torres, J.; Hernández-González, S.; GonzálezUribe, D.U.; del Socorro Bolívar-Cimé, B. Activity patterns and temporal niche partitioning of dogs and medium-sized wild mammals in urban parks of Xalapa, Mexico. Urban Ecosyst. 2019, 22, 1061–1070. [Google Scholar] [CrossRef]
- Gil-Fernández, M.; Harcourt, R.; Newsome, T.; Towerton, A.; Carthey, A. Adaptations of the red fox (Vulpes vulpes) to urban environments in Sydney, Australia. J. Urban Ecol. 2020, 6, juaa009. [Google Scholar] [CrossRef]
- Torretta, E.; Serafini, M.; Puopolo, F.; Schenone, L. Spatial and temporal adjustments allowing the coexistence among carnivores in Liguria (NW Italy). Acta Ethol. 2016, 19, 123–132. [Google Scholar] [CrossRef]
- McIntyre, N.E.; Rango, J.; Fagan, W.F.; Faeth, S.H. Ground arthropod community structure in a heterogeneous urban environment. Landsc. Urban Plan. 2001, 52, 257–274. [Google Scholar] [CrossRef]



| Species | VB | CS |
|---|---|---|
| Badger–cat | 0.62 (0.59–0.65) | 0.67 (0.56–0.79) |
| Badger–fox | 0.90 (0.86–0.94) | 0.76 (0.66–0.85) |
| Badger–beech marten | 0.83 (0.74–0.93) | 0.75 (0.57–0.92) |
| Sites | VB | CS |
|---|---|---|
| Campo dei Fiori | 0.86 (0.79–0.92) | 0.92 (0.86–0.97) |
| Pineta Park | 0.79 (0.67–0.91) | 0.88 (0.77–0.99) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisi, F.; Grespan, P.; Tranquillo, C.; Martinoli, A.; Wauters, L.A.; Preatoni, D.G. Year-Round Activity Patterns of Badgers (Meles meles) and Mesocarnivore Communities in Urban and Sub-Urban Areas. Urban Sci. 2025, 9, 453. https://doi.org/10.3390/urbansci9110453
Bisi F, Grespan P, Tranquillo C, Martinoli A, Wauters LA, Preatoni DG. Year-Round Activity Patterns of Badgers (Meles meles) and Mesocarnivore Communities in Urban and Sub-Urban Areas. Urban Science. 2025; 9(11):453. https://doi.org/10.3390/urbansci9110453
Chicago/Turabian StyleBisi, Francesco, Pietro Grespan, Claudia Tranquillo, Adriano Martinoli, Lucas Armand Wauters, and Damiano Giovanni Preatoni. 2025. "Year-Round Activity Patterns of Badgers (Meles meles) and Mesocarnivore Communities in Urban and Sub-Urban Areas" Urban Science 9, no. 11: 453. https://doi.org/10.3390/urbansci9110453
APA StyleBisi, F., Grespan, P., Tranquillo, C., Martinoli, A., Wauters, L. A., & Preatoni, D. G. (2025). Year-Round Activity Patterns of Badgers (Meles meles) and Mesocarnivore Communities in Urban and Sub-Urban Areas. Urban Science, 9(11), 453. https://doi.org/10.3390/urbansci9110453

