Nature in the Heart and Mind of the Beholder: Psycho-Emotional and EEG Differences in Perception of Virtual Nature Due to Gender
Abstract
:1. Introduction
2. Methods and Related Work
3. The Experiment Description
3.1. Material
3.2. Subjects
3.3. Design and Procedure
- Control: sitting calmly with the eyes open,
- 2D: watching the converted video on a computer screen,
- 3D: watching the VR 360 virtual nature video (a walk in a forest).
- The “Environmental Identity” index (EID) [50], assessed for each subject prior to the experimental trials. We used the Russian version of the EID scale, which consists of 24 items [51]. The participants used a 5-point scale to indicate the extent to which the given statements described their general relationship with the natural environment (1 = strongly disagree, 5 = strongly agree). For example, “I consider myself part of nature, inseparable from it” or “When I am sad or stressed, I helps to spend some time alone with nature”. Correspondingly, the possible EID scores were in the range from 24 to 120, where higher values reflect the predisposition to form an emotional connection to the natural environment. The internal consistency among the items was good (Cronbach’s α = 0.88).
- The subject’s emotional state was assessed after each of the three experimental conditions via the 3 components from the Self-Assessment Manikin (SAM) Test [52], all measured on a 9-point-likert scale (Figure 3):
- Valence (sad–happy),
- Arousal (calm–excited),
- Dominance (low–high).
- Brainwave activity was measured in seven frequency bands, which was registered by multichannel EEG equipment from Neuvo SynAmps2 System (Neuvo EEG 64ch, Compumedics, Australia) in the three experimental conditions: Control, 2D, and 3D. EEG recordings were obtained with the standard Ag/AgCl 64-channel scalp electrodes, referenced to the Cpz, and an AFz ground was used. EEGs were continuously recorded at a sampling frequency of 1000 Hz and were bandpass filtered from 0.5 Hz to 40 Hz, and the interelectrode impedances were kept below 5 kO.
4. Results
4.1. The Psychometric Data Analysis
4.2. The EEG Data Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, M.; Kim, E.; Choe, J.; Choi, S.; Ha, S.; Kim, G. Psychological Effects of Green Experiences in a Virtual Environment: A Systematic Review. Forests 2022, 13, 1625. [Google Scholar] [CrossRef]
- Liszio, S.; Graf, L.; Masuch, M. The relaxing effect of virtual nature: Immersive technology provides relief in acute stress situations. Annu. Rev. Cyberther. Telemed 2018, 16, 87–93. [Google Scholar]
- Sagnier, C.; Loup-Escande, E.; Valléry, G. Effects of gender and prior experience in immersive user experience with virtual reality. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Washington, DC, USA, 24–28 July 2019; Springer: Cham, Switzerland, 2019; pp. 305–314. [Google Scholar]
- Abich, J.; Parker, J.; Murphy, J.S.; Eudy, M. A review of the evidence for training effectiveness with virtual reality technology. Virtual Real. 2021, 25, 919–933. [Google Scholar] [CrossRef]
- Bolouki, A. The impact of virtual reality natural and built environments on affective responses: A systematic review and meta-analysis. Int. J. Environ. Health Res. 2022, 32, 1–17. [Google Scholar] [CrossRef]
- Marín-Morales, J.; Torrecilla-Moreno, C.; Guixeres Provinciale, J.; Llinares Millán, M.D.C. Methodological bases for a new platform for the measurement of human behaviour in virtual environments. DYNA Ing. E Ind. 2017, 92, 34–38. [Google Scholar]
- Marín-Morales, J.; Llinares, C.; Guixeres, J.; Alcañiz, M. Emotion Recognition in Immersive Virtual Reality: From Statistics to Affective Computing. Sensors 2020, 20, 5163. [Google Scholar] [CrossRef]
- Rizzo, A.S.; Schultheis, M.T.; Rothbaum, B.O. Ethical issues for the use of virtual reality in the psychological sciences. In Ethical Issues in Clinical Neuropsychology; Bush, S.S., Drexler, M.L., Eds.; Swets & Zeitlinger Publishers: Lisse, The Netherlands, 2002; pp. 243–277. [Google Scholar]
- Reece, R.; Bornioli, A.; Bray, I.; Alford, C. Exposure to Green and Historic Urban Environments and Mental Well-Being: Results from EEG and Psychometric Outcome Measures. Int. J. Environ. Res. Public Health 2022, 19, 13052. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.W. The Built Environment and Mental Health. J. Urban Health 2003, 80, 536–555. [Google Scholar] [CrossRef] [PubMed]
- Bratman, G.N.; Hamilton, J.P.; Daily, G.C. The impacts of nature experience on human cognitive function and mental health. Ann. N. Y. Acad. Sci. 2012, 1249, 118–136. [Google Scholar] [CrossRef]
- Hong, S.; Joung, D.; Lee, J.; Kim, D.-Y.; Kim, S.; Park, B.-J. The Effects of Watching a Virtual Reality (VR) Forest Video on Stress Reduction in Adults. J. People Plants Environ. 2019, 22, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Bourrier, S.C.; Berman, M.G.; Enns, J.T. Cognitive Strategies and Natural Environments Interact in Influencing Executive Function. Front. Psychol. 2018, 9, 1248. [Google Scholar] [CrossRef]
- Dores, A.R.; Barbosa, F.; Monteiro, L.; Reis, M.; Coelho, C.; Ribeiro, E.; Leitão, M.; Carvalho, I.P.; Sousa, L.; Caldas, A. Amygdala Activation in Response to 2D and 3D Emotion-Inducing Stimuli. PsychNology J. 2014, 12, 29–43. [Google Scholar]
- Higuera-Trujillo, J.L.; Maldonado, J.L.T.; Millán, C.L. Psychological and physiological human responses to simu-lated and real environments: A comparison between Photographs, 360 Panoramas, and Virtual Reality. Appl. Ergon. 2017, 65, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, U.; Chinello, F.; Koumaditis, K. Investigating the effectiveness of immersive VR skill training and its link to physiological arousal. Virtual Real. 2022, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Razumnikova, O.M.; Varnavsky, I.N. The particulars of emotional attitude towards natural and urban landscapes in young and older age. Valeologiya 2017, 4, 55–61. (In Russian) [Google Scholar]
- Bower, I.; Tucker, R.; Enticott, P.G. Impact of built environment design on emotion measured via neurophysiological correlates and subjective indicators: A systematic review. J. Environ. Psychol. 2019, 66, 101344. [Google Scholar] [CrossRef]
- Presti, P.; Ruzzon, D.; Avanzini, P.; Caruana, F.; Rizzolatti, G.; Vecchiato, G. Measuring arousal and valence generated by the dynamic experience of architectural forms in virtual environments. Sci. Rep. 2022, 12, 13376. [Google Scholar] [CrossRef]
- Berman, M.G.; Kross, E.; Krpan, K.M.; Askren, M.K.; Burson, A.; Deldin, P.J.; Kaplan, S.; Sherdell, L.; Gotlib, I.H.; Jonides, J. Interacting with nature improves cognition and affect for individuals with depression. J. Affect. Disord. 2012, 140, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Korisky, U.; Mudrik, L. Dimensions of Perception: 3D Real-Life Objects Are More Readily Detected Than Their 2D Images. Psychol. Sci. 2021, 32, 1636–1648. [Google Scholar] [CrossRef] [PubMed]
- Dozio, N.; Marcolin, F.; Scurati, G.W.; Nonis, F.; Ulrich, L.; Vezzetti, E.; Ferrise, F. Development of an affective database made of interactive virtual environments. Sci. Rep. 2021, 11, 24108. [Google Scholar] [CrossRef]
- Parker, A.J. Vision in our three-dimensional world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, N.E.; Dahmani, L.; Konishi, K.; Bohbot, V.D. Eye tracking, strategies, and sex differences in virtual navigation. Neurobiol. Learn. Mem. 2012, 97, 81–89. [Google Scholar] [CrossRef]
- Lambrey, S.; Berthoz, A. Gender differences in the use of external landmarks versus spatial representations updated by self-motion. J. Integr. Neurosci. 2007, 6, 379–401. [Google Scholar] [CrossRef]
- Fernandez-Baizan, C.; Arias, J.; Mendez, M. Spatial memory in young adults: Gender differences in egocentric and allocentric performance. Behav. Brain Res. 2019, 359, 694–700. [Google Scholar] [CrossRef]
- Lithari, C.; Frantzidis, C.A.; Papadelis, C.; Vivas, A.B.; Klados, M.; Kourtidou-Papadeli, C.; Pappas, C.; Ioannides, A.A.; Bamidis, P.D. Are Females More Responsive to Emotional Stimuli? A Neurophysiological Study Across Arousal and Valence Dimensions. Brain Topogr. 2010, 23, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saylik, R.; Raman, E.; Szameitat, A.J. Sex Differences in Emotion Recognition and Working Memory Tasks. Front. Psychol. 2018, 9, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, J.S.; Hamann, S. Sex differences in brain activation to emotional stimuli: A meta-analysis of neuroimaging studies. Neuropsychologia 2012, 50, 1578–1593. [Google Scholar] [CrossRef]
- Koch, K.; Pauly, K.; Kellermann, T.; Seiferth, N.Y.; Reske, M.; Backes, V.; Stöcker, T.; Shah, N.J.; Amunts, K.; Kircher, T.; et al. Gender differences in the cognitive control of emotion: An fMRI study. Neuropsychologia 2007, 45, 2744–2754. [Google Scholar] [CrossRef] [PubMed]
- Reber, J.; Tranel, D. Sex differences in the functional lateralization of emotion and decision making in the human brain. J. Neurosci. Res. 2017, 95, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzsáki, G.; Moser, E.I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 2013, 16, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chersi, F.; Burgess, N. The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions. Neuron 2015, 88, 64–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kragel, P.A.; Reddan, M.C.; LaBar, K.S.; Wager, T.D. Emotion schemas are embedded in the human visual system. Sci. Adv. 2019, 5, eaaw4358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viganò, S.; Piazza, M. Distance and Direction Codes Underlie Navigation of a Novel Semantic Space in the Human Brain. J. Neurosci. 2020, 40, 2727–2736. [Google Scholar] [CrossRef]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Ulrich, R.S. Natural Versus Urban Scenes: Some Psychophysiological Effects. Environ. Behav. 1981, 13, 523–556. [Google Scholar] [CrossRef]
- Mygind, L.; Kjeldsted, E.; Hartmeyer, R.D.; Mygind, E.; Bølling, M.; Bentsen, P. Immersive Nature-Experiences as Health Promotion Interventions for Healthy, Vulnerable, and Sick Populations? A Systematic Review and Appraisal of Controlled Studies. Front. Psychol. 2019, 10, 943. [Google Scholar] [CrossRef]
- Summers, J.K.; Vivian, D.N. Ecotherapy—A Forgotten Ecosystem Service: A Review. Front. Psychol. 2018, 9, 1389. [Google Scholar] [CrossRef]
- Corazon, S.S.; Sidenius, U.; Poulsen, D.V.; Gramkow, M.C.; Stigsdotter, U.K. Psycho-Physiological Stress Recovery in Outdoor Nature-Based Interventions: A Systematic Review of the Past Eight Years of Research. Int. J. Environ. Res. Public Health 2019, 16, 1711. [Google Scholar] [CrossRef] [Green Version]
- Ohly, H.; White, M.P.; Wheeler, B.W.; Bethel, A.; Ukoumunne, O.C.; Nikolaou, V.; Garside, R. Attention Restoration Theory: A systematic review of the attention restoration potential of exposure to natural environments. J. Toxicol. Environ. Health Part B 2016, 19, 305–343. [Google Scholar] [CrossRef] [Green Version]
- Yeo, N.; White, M.; Alcock, I.; Garside, R.; Dean, S.; Smalley, A.; Gatersleben, B. What is the best way of delivering virtual nature for improving mood? An experimental comparison of high definition TV, 360° video, and computer generated virtual reality. J. Environ. Psychol. 2020, 72, 101500. [Google Scholar] [CrossRef]
- Ben-Simon, E.; Podlipsky, I.; Okon-Singer, H.; Gruberger, M.; Cvetkovic, D.; Intrator, N.; Hendler, T. The dark side of the alpha rhythm: fMRI evidence for induced alpha modulation during complete darkness. Eur. J. Neurosci. 2013, 37, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Samaha, J.; LaRocque, J.J.; Postle, B.R. Spontaneous alpha-band amplitude predicts subjective visibility but not discrimination accuracy during high-level perception. Conscious. Cogn. 2022, 102, 103337. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Iemi, L.; Schoffelen, J.-M.; de Lange, F.P.; Haegens, S. Alpha Oscillations Shape Sensory Representation and Perceptual Sensitivity. J. Neurosci. 2021, 41, 9581–9592. [Google Scholar] [CrossRef] [PubMed]
- Irrmischer, M.; Poil, S.-S.; Mansvelder, H.D.; Intra, F.S.; Linkenkaer-Hansen, K. Strong long-range temporal correlations of beta/gamma oscillations are associated with poor sustained visual attention performance. Eur. J. Neurosci. 2018, 48, 2674–2683. [Google Scholar] [CrossRef] [Green Version]
- Harmony, T. The functional significance of delta oscillations in cognitive processing. Front. Integr. Neurosci. 2013, 7, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapomarda, G.; Valer, S.; Job, R.; Grecucci, A. Built to last: Theta and delta changes in resting-state EEG activity after regulating emotions. Brain Behav. 2022, 12, e2597. [Google Scholar] [CrossRef] [PubMed]
- Alyan, E.; Combe, T.; Rambli, D.R.A.; Sulaiman, S.; Merienne, F.; Diyana, N. The Influence of Virtual Forest Walk on Physiological and Psychological Responses. Int. J. Environ. Res. Public Health 2021, 18, 11420. [Google Scholar] [CrossRef]
- Clayton, S. Environmental Identity: A Conceptual and an Operational Definition. In Identity and the Natural Environment: The Psychological Significance of Nature; MIT Press: Cambridge, MA, USA, 2003; pp. 45–65. [Google Scholar]
- Clayton, S.; Irkhin, B.; Nartova-Bochaver, S. Environmental Identity in Russia: Validation and Relationship to the Concern for People and Plants. Psychology. J. High. Sch. Econ. 2019, 16, 85–107. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Binsch, O.; Bottenheft, C.; Landman, A.M.; Roijendijk, L.; Vermetten, E.H. Testing the applicability of a virtual reality simulation platform for stress training of first responders. Mil. Psychol. 2021, 33, 182–196. [Google Scholar] [CrossRef]
- Halpern, D.F.; Collaer, M.L. Sex Differences in Visuospatial Abilities: More Than Meets the Eye; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Roe, J.J.; Aspinall, P.A.; Mavros, P.; Coyne, R. Engaging the brain: The impact of natural versus urban scenes using novel EEG methods in an experimental setting. Environ. Sci. 2013, 1, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, D.J.; Kim, S.; Chung, W.H.; Park, K.A.; Kim, J.D.; Kim, D.; Kim, M.J.; Kim, K.; Jeon, H.J. Effect of virtual reality on stress reduction and change of physiological parameters including heart rate variability in people with high stress: An open ran-domized crossover trial. Front. Psychiatry 2021, 12, 614539. [Google Scholar]
- Gao, T.; Zhang, T.; Zhu, L.; Qiu, L. Exploring Psychophysiological Restoration and Individual Preference in the Different Environments Based on Virtual Reality. Int. J. Environ. Res. Public Health 2019, 16, 3102. [Google Scholar] [CrossRef] [Green Version]
- Hopman, R.J.; LoTemplio, S.B.; Scott, E.E.; McKinney, T.L.; Strayer, D.L. Resting-state posterior alpha power changes with prolonged exposure in a natural environment. Cogn. Res. Princ. Implic. 2020, 5, 51. [Google Scholar] [CrossRef]
- Tian, F.; Hua, M.; Zhang, W.; Li, Y.; Yang, X. Emotional arousal in 2D versus 3D virtual reality environments. PLoS ONE 2021, 16, e0256211. [Google Scholar] [CrossRef] [PubMed]
- Norwood, M.F.; Lakhani, A.; Maujean, A.; Zeeman, H.; Creux, O.; Kendall, E. Brain activity, underlying mood and the environment: A systematic review. J. Environ. Psychol. 2019, 65, 101321. [Google Scholar] [CrossRef]
Men | Women | |||||
---|---|---|---|---|---|---|
Valence | Arousal | Dominance | Valence | Arousal | Dominance | |
Control | 5.0 ± 1.1 * | 2.8 ± 2.4 * | 3.6 ± 2.2 * | 5.6 ± 1.3 | 3.0 ± 2.4 * | 3.5 ± 2.2 * |
2D | 6.4 ± 0.8 * | 3.3 ± 1.3 # | 4.1 ± 1.4 | 5.6 ± 1.5 | 4.0 ± 1.9 | 4.7 ± 2.2 |
3D | 6.3 ± 1.5 | 4.6 ± 1.6 *# | 5.2 ± 2.2 * | 6.4 ± 1.2 | 5.1 ± 1.9 * | 5.1 ± 2.7 * |
Difference | Χ(2) = 6.81, p = 0.03 | Χ(2) = 7.00, p = 0.03 | Χ(2) = 4.06, p = 0.13 | Χ(2) = 1.87, p = 0.39 | Χ(2) = 5.61, p = 0.06 | Χ(2) = 5.36, p = 0.07 |
Men | Women | |||
---|---|---|---|---|
Alpha2 | Beta2 | Alpha2 | Beta2 | |
Control | −0.09 ± 0.53 * | −0.72 ± 0.26 * | −0.07 ± 0.25 * | −0.86 ± 0.20 |
2D | −0.29 ± 0.49 *# | −0.83 ± 0.25 *# | −0.44 ± 0.23 * | −0.91 ± 0.27 # |
3D | −0.08 ± 0.57 # | −0.63 ± 0.30 # | −0.29 ± 0.23 | −0.78 ± 0.26 # |
Difference | Χ(2) = 6.21 p = 0.05 | Χ(2) = 5.03 p = 0.08 | Χ(2) = 10.42 p = 0.006 | Χ(2) = 3.83 p = 0.15 |
Delta | Theta | Alpha1 | Beta1 | Gamma | |
---|---|---|---|---|---|
Control | 0.484 ± 0.417 * | −0.100 ± 0.308 ** | −0.126 ± 0.349 *** | −0.540 ± 0.277 ** | −1.036 ± 0.210 * |
2D | 0.316 ± 0.312 *### | −0.280 ± 0.255 **### | −0.401 ± 0.291 ***### | −0.693 ± 0.249 **## | −1.085 ± 0.228 ## |
3D | 0.525 ± 0.416 ### | −0.116 ± 0.328 ### | −0.214 ± 0.373 ### | −0.561 ± 0.319 ## | −0.903 ± 0.250 *## |
Difference | Χ(2) = 12.4 p = 0.002 | Χ(2) = 17.5 p = 0.0002 | Χ(2) = 27.1 p < 0.0001 | Χ(2) = 10.9 p = 0.004 | Χ(2) = 9.7 p = 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davidov, A.; Razumnikova, O.; Bakaev, M. Nature in the Heart and Mind of the Beholder: Psycho-Emotional and EEG Differences in Perception of Virtual Nature Due to Gender. Vision 2023, 7, 30. https://doi.org/10.3390/vision7020030
Davidov A, Razumnikova O, Bakaev M. Nature in the Heart and Mind of the Beholder: Psycho-Emotional and EEG Differences in Perception of Virtual Nature Due to Gender. Vision. 2023; 7(2):30. https://doi.org/10.3390/vision7020030
Chicago/Turabian StyleDavidov, Artem, Olga Razumnikova, and Maxim Bakaev. 2023. "Nature in the Heart and Mind of the Beholder: Psycho-Emotional and EEG Differences in Perception of Virtual Nature Due to Gender" Vision 7, no. 2: 30. https://doi.org/10.3390/vision7020030
APA StyleDavidov, A., Razumnikova, O., & Bakaev, M. (2023). Nature in the Heart and Mind of the Beholder: Psycho-Emotional and EEG Differences in Perception of Virtual Nature Due to Gender. Vision, 7(2), 30. https://doi.org/10.3390/vision7020030