Adjuvant Therapy Reduces Fat Mass Loss during Exercise Prescription in Breast Cancer Survivors
Abstract
:1. Introduction
- -
- Evaluate how adjuvant therapy can influence the effectiveness of an unsupervised exercise program in terms of fat loss, analyzing how different therapeutic choices can have a different effect;
- -
- Verify the effectiveness of an unsupervised exercise program on health-related quality of life in breast cancer survivors.
2. Materials and Methods
2.1. Subjects
2.1.1. Inclusion Criteria
2.1.2. Exclusion Criteria
2.2. Procedures
- -
- First visit (T0): history, cardiac evaluation, lifestyle assessment, body composition analysis, physical fitness parameters related to health and health-related quality of life.
- -
- Follow-up visits (every 30 days): body composition analysis and health-related physical fitness parameters.
- -
- six months follow-up visit (T5) body composition analysis, physical fitness parameters related to health and health-related quality of life.
2.2.1. Medical History and Cardiac Evaluation
2.2.2. Lifestyle Assessment
- -
- Total energy expenditure in Kcal per day;
- -
- Kcal > 3 METS expenses per day;
- -
- PAL (physical activity level) defined as total energy expenditure/resting metabolic rate;
- -
- Steps per day;
- -
- Time spent in sedentary behaviors 1 to 1.49 METs (min);
- -
- Light physical activity 1.5 to 2.99 metabolic equivalent of task (METs) mild physical activity (min);
- -
- Moderate physical activity 3 to 5.99 METs (min);
- -
- Vigorous physical activity> 6 METs (min);
2.2.3. Body-Composition Analysis
2.2.4. Health-Related Physical Fitness Parameters
2.2.5. Health-Related Quality of Life Assessment
2.2.6. Exercise Prescription
2.3. Statistical Analysis
3. Results
3.1. Lifestyle Assessment
- -
- Total energy expenditure 2210.0 ± 336.0 kcal/day;
- -
- Kcal> 3 METS 338.2 ± 263.6 kcal/day;
- -
- Steps per day 8224.5 ± 2846.3;
- -
- PAL 1.55 ± 0.18;
- -
- Sedentary behaviors 16.5 ± 3.10 h/day;
- -
- Light physical activity 4.9 ± 1.7 h/day;
- -
- Moderate physical activity 78 ± 12.0 min/day;
- -
- Vigorous physical activity 2.4 ± 0.02 min/day.
3.2. Body Composition Analysis
3.3. Health-Related Physical Fitness Parameters
3.4. Health-Related Quality of Life Assessment
3.5. Relationship between Adjuvant Cancer Therapy and Changes in Fat Mass
- -
- No therapy shows a fat mass reduction −16.5% ± 13.2%;
- -
- Hormone therapy shows a fat mass reduction −6.5% ± 9.1%;
- -
- Chemotherapy and/or target therapy shows a fat mass reduction −6.8% ± 10.4%;
- -
- Hormone therapy + chemotherapy and/or target therapy shows a fat mass reduction −6.9% ± 9.0%.
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- I Numeri del Cancro in Italia. Available online: https://www.aiom.it/wp-content/uploads/2018/10/2018_NumeriCancro-operatori.pdf (accessed on 15 May 2020).
- Engin, A. Obesity-associated Breast Cancer: Analysis of risk factors. Adv. Exp. Med. Biol. 2017, 960, 571–606. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. The diseasome of physical inactivity--and the role of myokines in muscle--fat cross talk. J. Physiol. 2009, 587, 5559–5568. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.; Anderson, C.; Lippman, S.M. Physical activity, sedentary behaviour, diet, and cancer: An update and emerging new evidence. Lancet Oncol. 2017, 18, e457–e471. [Google Scholar] [CrossRef]
- Ahern, T.P.; Lash, T.L.; Thwin, S.S.; Silliman, R.A. Impact of acquired comorbidities on all-cause mortality rates among older breast cancer survivors. Med. Care. 2009, 47, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, B.; Delmar, C.; Lörincz, T.; Falkmer, U.; Grønkjær, M. Investigating Changes in Weight and Body Composition Among Women in Adjuvant Treatment for Breast Cancer: A Scoping Review. Cancer Nurs. 2019, 42, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Lahart, I.M.; Metsios, G.S.; Nevill, A.M.; Carmichael, A.R. Physical activity for women with breast cancer after adjuvant therapy. Cochrane Database Syst. Rev. 2018, 2018, CD011292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azrad, M.; Demark-Wahnefried, W. The association between adiposity and breast cancer recurrence and survival: A review of the recent literature. Curr. Nutr. Rep. 2014, 3, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkham, A.A.; Bland, K.A.; Sayyari, S.; Campbell, K.L.; Davis, M.K. Clinically Relevant Physical Benefits of Exercise Interventions in Breast Cancer Survivors. Curr. Oncol. Rep. 2016, 18, 12. [Google Scholar] [CrossRef] [PubMed]
- Quinten, C.; Coens, C.; Mauer, M.; Comte, S.; Sprangers, M.A.; Cleeland, C.; Osoba, D.; Bjordal, K.; Bottomley, A. Baseline quality of life as a prognostic indicator of survival: A meta-analysis of individual patient data from EORTC clinical trials. Lancet Oncol. 2009, 10, 865–871. [Google Scholar] [CrossRef]
- Montazeri, A. Quality of life data as prognostic indicators of survival in cancer patients: An overview of the literature from 1982 to 2008. Health Qual. Life Outcomes. 2009, 7, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascherini, G.; Tosi, B.; Giannelli, C.; Grifoni, E.; Degl’innocenti, S.; Galanti, G. Breast cancer: Effectiveness of a one-year unsupervised exercise program. J. Sports Med. Phys. Fit. 2019, 59, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Mascherini, G.; Giannelli, C.; Ghelarducci, G.; Degl’Innocenti, S.; Petri, C.; Galanti, G. Active lifestyle promotion with home-based exercise in breast cancer survivors. J. Hum. Sport Exerc. 2017, 12, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Stefani, L.; Mascherini, G.; Scacciati, I.; De Luca, A.; Maffulli, N.; Galanti, G. Positive effect of the use of accelerometry on lifestyle awareness of overweight hypertensive patients. Asian J. Sports Med. 2013, 4, 241–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascherini, G.; Petri, C.; Galanti, G. Integrated total body composition and localized fat-free mass assessment. Sport Sci. Health. 2015, 11, 217. [Google Scholar] [CrossRef]
- Welborn, T.A.; Dhaliwal, S.S.; Bennett, S.A. Waist–hip ratio is the dominant risk factor predicting cardiovascular death in Australia. Med. J. Aust. 2003, 179, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Protocol for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry (ISAK): Murcia, Spain, 2019. [Google Scholar]
- Foster, K.F.; Lukaski, H.C. Whole-body impedance—what does it measure? Am. J. Clin. Nutr. 1996, 64, 388S–396S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solway, S.; Brooks, D.; Lacasse, Y.; Thomas, S. A qualitative systematic overview of the measurement properties of functional walk tests used in the cardiorespiratory domain. Chest 2001, 119, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Arney, B.E.; Glover, R.; Fusco, A.; Cortis, C.; de Koning, J.J.; van Erp, T.; Jaime, S.; Mikat, R.P.; Porcari, J.P.; Foster, C. Comparison of RPE (Rating of Perceived Exertion) Scales for Session RPE. Int. J. Sports Physiol. Perform. 2019, 14, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Vega, D.; Merino-Marban, R.; Viciana, J. Criterion related validity of sit and reach tests for estimating hamstring and lumbar extensibility: A meta analysis. J. Sports Sci. Med. 2014, 13, 1–14. [Google Scholar] [PubMed]
- Gomes, P.R.L.; Junior, I.F.F.; Da Silva, C.B.; Gomes, I.C.; Rocha, A.P.R.; Salgado, A.S.I.; Carmo, E.M.D. Short term changes in handgrip strength, body composition, and lymphedema induced by breast cancer surgery. Rev. Bras. Ginecol. Obstet. 2014, 36, 244–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabró, M.A.; Lee, J.M.; Saint-Maurice, P.F.; Yoo, H.; Welk, G.J. Validity of physical activity monitors for assessing lower intensity activity in adults. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, V.; Trentham-Dietz, A.; Berkman, A.; Fujii, M.; Veal, C.; Hampton, J.; Gangnon, R.; Newcomb, P.A.; Gilchrist, S.C.; Sprague, B.L. The association between post-diagnosis health behaviors and long-term quality of life in survivors of ductal carcinoma in situ: A population-based longitudinal cohort study. Qual. Life Res. 2018, 27, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Apolone, G.; Mosconi, P. The Italian SF-36 Health Survey: Translation, validation and norming. J. Clin. Epidemiol. 1998, 51, 1025–1036. [Google Scholar] [CrossRef]
- Pescatello, L.S.; Riebe, D.; Arena, R.; American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2014. [Google Scholar]
- Santos-Lozano, A.; Ramos, J.; Alvarez-Bustos, A.; Cantos, B.; Alejo, L.B.; Pagola, I.; Soria, A.; Maximiano, C.; Fiuza-Luces, C.; Soares-Miranda, L.; et al. Cardiorespiratory fitness and adiposity in breast cancer survivors: Is meeting current physical activity recommendations really enough. Support. Care Cancer 2018, 26, 2293–2301. [Google Scholar] [CrossRef] [PubMed]
- Gómez, A.M.; Martínez, C.; Fiuza-Luces, C.; Herrero, F.; Pérez, M.; Madero, L.; Ruiz, J.R.; Lucia, A.; Ramírez, M. Exercise training and cytokines in breast cancer survivors. Int. J. Sports Med. 2011, 32, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Battaglini, C.L.; Mills, R.C.; Phillips, B.; Lee, J.T.; E Story, C.; Nascimento, M.G.; Hackney, A.C. Twenty-five years of research on the effects of exercise training in breast cancer survivors: A systematic review of the literature. World J. Clin. Oncol. 2014, 10, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Speck, R.M.; Courneya, K.S.; Mâsse, L.C.; Duval, S.; Schmitz, K.H. An update of controlled physical activity trials in cancer survivors: A systematic review and meta-analysis. J. Cancer Surviv. 2010, 4, 87–100. [Google Scholar]
- Fairey, A.S.; Courneya, K.S.; Field, C.J.; Bell, G.J.; Jones, L.W.; Mackey, J.R. Randomized controlled trial of exercise and blood immune function in postmenopausal breast cancer survivors. J. Appl. Physiol. 2005, 98, 1534–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Ligibel, J.; Campbell, N.; Partridge, A.; Chen, W.Y.; Salinardi, T.; Chen, H.; Adloff, K.; Keshaviah, A.; Winer, E.P. Impact of a mixed strength and endurance exercise intervention on insulin levels in breast cancer survivors. J. Clin. Oncol. 2008, 26, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Fairey, A.S.; Courneya, K.S.; Field, C.J.; Bell, G.J.; Jones, L.W.; Martin, B.S.; Mackey, J.R. Effect of exercise training on C-reactive protein in postmenopausal breast cancer survivors: A randomized controlled trial. Brain Behav. Immun. 2005, 19, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.L.; Varma, K.; Alvarez-Reeves, M.; Cadmus, L.; Wiley, A.; Chung, G.G.; DiPietro, L.; Mayne, S.T.; Yu, H. Randomized controlled trial of aerobic exercise on insulin and insulin-like growth factors in breast cancer survivors: The Yale Exercise and Survivorship study. Cancer Epidemiol. Biomarkers Prev. 2009, 18, 306–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Lee, M.G. Effects of Exercise Interventions on Breast Cancer Patients During Adjuvant Therapy: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Cancer Nurs. 2020, 43, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Navigante, A.; Morgado, P.C. Does physical exercise improve quality of life of advanced cancer patients? Curr. Opin. Support Palliat Care. 2016, 10, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Clark, W.; Siegel, E.M.; Chen, Y.A.; Zhao, X.; Parsons, C.M.; Hernandez, J.M.; Weber, J.; Thareja, S.; Choi, J.; Shibata, D. Quantitative measures of visceral adiposity and body mass index in predicting rectal cancer outcomes after neoadjuvant chemoradiation. J. Am. Coll. Surg. 2013, 216, 1070–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, B.K.; Saltin, B. Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J. Med. Sci. Sports. 2015, 25, 1–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefani, L.; Klika, R.; Mascherini, G.; Mazzoni, F.; Lunghi, A.; Petri, C.; Petreni, P.; Di Costanzo, F.; Maffulli, N.; Galanti, G. Effects of a home-based exercise rehabilitation program for cancer survivors. J. Sports Med. Phys. Fitness. 2019, 59, 846–852. [Google Scholar] [CrossRef] [PubMed]
T0 | T5 | Δ T5-T0 | F Value | ANOVA | ES | |
---|---|---|---|---|---|---|
Weight (kg) | 71.9 ± 10.8 | 68.7 ± 10.1 | −3.2 ± 2.3 | 6.47 | <0.001 | 1.36 |
BMI (kg/m2) | 27.3 ± 4.2 | 26.1 ± 3.9 | −1.2 ± 0.9 | 6.12 | <0.001 | 1.34 |
Waist circ. (cm) | 90.2 ± 10.8 | 85.3 ± 9.8 | −4.9 ± 4.0 | 6.02 | <0.001 | 1.22 |
Hip circ. (cm) | 106.1 ± 9.1 | 102.1 ± 7.1 | −4.0 ± 3.9 | 5.76 | <0.001 | 1.02 |
Waist/hip | 0.85 ± 0.069 | 0.83 ± 0.06 | −0.01 ± 0.04 | 0.23 | NS | 0.36 |
Operated arm circ. (cm) | 31.8 ± 3.4 | 29.5 ± 2.6 | −2.4 ± 1.7 | 5.43 | <0.001 | 1.39 |
Not operated arm circ. (cm) | 31.5 ± 3.4 | 29.4 ± 2.7 | −2.1 ± 2.1 | 4.32 | <0.001 | 0.99 |
Biceps skinfold (mm) | 16.9 ± 8.1 | 13.8 ± 6.5 | −3.1 ± 5.0 | 4.01 | <0.001 | 0.61 |
Triceps skinfold (mm) | 27.1 ± 5.7 | 23.5 ± 5.6 | −3.6 ± 2.9 | 5.21 | <0.001 | 1.26 |
Subscapular skinfold (mm) | 25.5 ± 7.9 | 22.2 ± 7.1 | −3.3 ± 3.9 | 4.55 | <0.001 | 0.82 |
Supra−iliac skinfold (mm) | 24.3 ± 8.9 | 21.0 ± 7.7 | −3.3 ± 7.1 | 3.42 | 0.032 | 0.46 |
Skinfold sum (mm) | 93.8 ± 25.5 | 80.5 ± 22.6 | −13.3 ± 12.5 | 6.12 | <0.001 | 1.06 |
T0 | T5 | Δ T5-T0 | F Value | ANOVA | ES | |
---|---|---|---|---|---|---|
PA (°) | 5.2 ± 0.7 | 5.3 ± 0.7 | 0.2 ± 0.7 | 0.31 | NS | 0.23 |
TBW (L) | 35.0 ± 3.3 | 34.2 ± 3.3 | −0.9 ± 1.8 | 3.12 | 0.025 | 0.48 |
ECW (L) | 17.5 ± 1.9 | 16.8 ± 1.9 | −0.7 ± 1.5 | 4.22 | <0.001 | 0.50 |
ICW (L) | 17.5 ± 2.3 | 17.4 ± 2.2 | −0.1 ± 1.6 | 0.68 | NS | 0.08 |
FFM (kg) | 46.7 ± 4.7 | 45.7 ± 4.4 | −1.0 ± 2.9 | 4.88 | 0.002 | 0.36 |
BCM (kg) | 23.1 ± 3.3 | 22.9 ± 3.1 | −0.1 ± 2.1 | 1.08 | NS | 0.06 |
FM (kg) | 25.0 ± 8.1 | 22.6 ± 7.2 | −2.4 ± 3.4 | 4.23 | <0.001 | 0.72 |
T0 | T5 | Δ T5-T0 | F Value | ANOVA | ES | |
---|---|---|---|---|---|---|
Chair test (reps) | 14.5 ± 3.8 | 18.3 ± 4.3 | 3.8 ± 2.6 | 8.12 | <0.001 | 1.45 |
Hand Gr. op. arm (kg) | 24.3 ± 4.8 | 26.5 ± 4.5 | 2.2 ± 4.5 | 3.55 | 0.012 | 0.48 |
Hand Gr. not op. arm (kg) | 24.2 ± 4.6 | 26.4 ± 4.3 | 2.2 ± 3.1 | 4.78 | <0.001 | 0.72 |
Sit and reach test (cm) | 2.6 ± 9.3 | 8.5 ± 7.1 | 5.8 ± 6.0 | 6.02 | <0.001 | 0.97 |
6 MWD (m) | 518.6 ± 133.0 | 584.8 ± 97.2 | 66.2 ± 107.2 | 4.28 | <0.001 | 0.62 |
HR rest (bpm) | 75.6 ± 13.5 | 73.5 ± 10.5 | −2.1 ± 11.8 | 3.92 | 0.015 | 0.18 |
SBP rest (mmHg) | 117 ± 15.1 | 110 ± 12.7 | −6.4 ± 13.4 | 3.04 | 0.048 | 0.48 |
DBP rest (mmHg) | 76.1 ± 11.3 | 70.6 ± 8.7 | −5.5 ± 9.70 | 4.11 | 0.013 | 0.57 |
MAP rest (mmHg) | 89.7 ± 11.5 | 83.9 ± 9.2 | −5.8 ± 9.8 | 4.11 | 0.012 | 0.59 |
T0 | T5 | Δ T5-T0 | p-Value | |
---|---|---|---|---|
PF (%) | 72.7 ± 24.6 | 83.7 ± 17.1 | 11.0 ± 15.9 | <0.001 |
RP (%) | 61.3 ± 39.1 | 65.5 ± 37.4 | 4.17 ± 33.5 | 0.43 |
BP (%) | 61.0 ± 25.8 | 67.4 ± 22.0 | 6.40 ± 30.3 | 0.18 |
GH (%) | 64.7 ± 20.4 | 69.1 ± 18.9 | 4.43 ± 6.97 | <0.001 |
VT (%) | 52.7 ± 18.4 | 57.4 ± 16.7 | 4.64 ± 15.0 | 0.051 |
SF (%) | 60.5 ± 24.5 | 67.6 ± 22.9 | 7.08 ± 20.1 | 0.027 |
RE (%) | 56.4 ± 43.2 | 65.9 ± 33.3 | 9.53 ± 37.7 | 0.11 |
MH (%) | 63.4 ± 14.8 | 67.3 ± 12.5 | 3.90 ± 10.7 | 0.022 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascherini, G.; Tosi, B.; Giannelli, C.; Ermini, E.; Osti, L.; Galanti, G. Adjuvant Therapy Reduces Fat Mass Loss during Exercise Prescription in Breast Cancer Survivors. J. Funct. Morphol. Kinesiol. 2020, 5, 49. https://doi.org/10.3390/jfmk5030049
Mascherini G, Tosi B, Giannelli C, Ermini E, Osti L, Galanti G. Adjuvant Therapy Reduces Fat Mass Loss during Exercise Prescription in Breast Cancer Survivors. Journal of Functional Morphology and Kinesiology. 2020; 5(3):49. https://doi.org/10.3390/jfmk5030049
Chicago/Turabian StyleMascherini, Gabriele, Benedetta Tosi, Chiara Giannelli, Elena Ermini, Leonardo Osti, and Giorgio Galanti. 2020. "Adjuvant Therapy Reduces Fat Mass Loss during Exercise Prescription in Breast Cancer Survivors" Journal of Functional Morphology and Kinesiology 5, no. 3: 49. https://doi.org/10.3390/jfmk5030049
APA StyleMascherini, G., Tosi, B., Giannelli, C., Ermini, E., Osti, L., & Galanti, G. (2020). Adjuvant Therapy Reduces Fat Mass Loss during Exercise Prescription in Breast Cancer Survivors. Journal of Functional Morphology and Kinesiology, 5(3), 49. https://doi.org/10.3390/jfmk5030049