Examination of Curcumin and Fenugreek Soluble Fiber Supplementation on Submaximal and Maximal Aerobic Performance Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Participants
2.3. Supplementation
2.4. Graded Exercise Test
2.5. Determination of the Ventilatory Threshold
2.6. Statistical Analyses
3. Results
3.1. PRE- and POST- Test Descriptive Statistics, Supplement Compliance, and Dietary Recall
3.2. Reliability
3.3. Fatigue Thresholds and Maximal Testing Parameters
3.4. Individual Responses for Ventilatory Threshold (O2) and O2 Peak
4. Discussion
4.1. Supplementation Effects on a Submaximal Endurance Performance Threshold
4.2. Synergistic Effects of Curcumin and Galactomannan Soluble Fiber
4.3. Supplementation Effects on Maximal Endurance Measurement (O2peak)
4.4. Individual Responses
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gupta, S.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. APPS J. 2013, 15, 195–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonla, O.; Kukongviriyapan, U.; Pakdeechote, P.; Kukongviriyapan, V.; Pannangpetch, P.; Prachaney, P.; Greenwald, S. Curcumin improves endothelial dysfunction and vascular remodeling in 2K-1C hypertensive rats by raising nitric oxide availability and reducing oxidative stress. Nitric Oxide 2014, 42, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohandas, K.M.; Desai, D.C. Epidemiology of digestive tract cancers in India. V. Large and small bowel. Indian J. Gastroenterol. 1999, 18, 118–121. [Google Scholar] [PubMed]
- Sinha, R.; Anderson, D.E.; McDonald, S.S.; Greenwald, P. Cancer risk and diet in India. J. Postgrad. Med. 2003, 49, 222–228. [Google Scholar]
- Juturu, V.; Sahin, K.; Pala, R.; Tuzcu, M.; Ozdemir, O.; Orhan, C.; Sahin, N. Curcumin prevents muscle damage by regulating NF-κB and Nrf2 pathways and improves performance: An in vivo model. J. Inflamm. Res. 2016, 9, 147–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, P.K.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Santos-Parker, J.R.; Strahler, T.R.; Bassett, C.J.; Bispham, N.Z.; Chonchol, M.B.; Seals, D.R. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging 2017, 9, 187–205. [Google Scholar] [CrossRef] [Green Version]
- Krishnakumar, I.M.; Ravi, A.; Kumar, D.; Kuttan, R.; Maliakel, B. An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. J. Funct. Foods 2012, 4, 348–357. [Google Scholar]
- Krishnakumar, I.M.; Ravi, A.; Kumar, D.; Maliakel, B.P. Formulation Containing Curcuminoids Exhibiting Enhanced Bioavailability. U.S. Patent US8785380B2, 22 July 2014. [Google Scholar]
- Sharma, R.A.; Euden, S.A.; Platton, S.L.; Cooke, D.N.; Shafayat, A.; Hewitt, H.R.; Marczylo, T.H.; Morgan, B.; Hemingway, D.; Plummer, S.M.; et al. Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin. Cancer Res. 2004, 10, 6847–6854. [Google Scholar] [CrossRef] [Green Version]
- Lao, C.D.; Ruffin, M.; Normolle, D.P.; Heath, D.D.; I Murray, S.; Bailey, J.M.; E Boggs, M.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 2006, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; Sun, D.; Zeng, X.; Yao, N.; Huang, X.; Huang, D.; Chen, Y. Piperine potentiates the hypocholesterolemic effect of curcumin in rats fed on a high fat diet. Exp. Ther. Med. 2014, 8, 260–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neelakantan, N.; Narayanan, M.; de Souza, R.J.; van Dam, R.M. Effect of fenugreek (Trigonella foenum-graecum L.) intake on glycemia: A meta-analysis of clinical trials. Nutr. J. 2014, 13, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srichamroen, A.F.; Field, C.J.; Thomson, A.B.R.; Basu, T.K. The modifying effects of Galactomannan from Canadian-grown Fenugreek (Trigonella foenum-graecum L.) on glycemic and lipidemic status in rats. J. Clin. Biochem. Nutr. 2008, 43, 167–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathern, J.R.; Raatz, S.K.; Thomas, W.; Slavin, J.L. Effect of fenugreek fiber on satiety, blood glucose and insulin response and energy intake in obese subjects. Phytother. Res. 2009, 23, 1543–1548. [Google Scholar] [CrossRef]
- Poole, C.B.; Bushey, B.; Foster, C.; Campbell, B.; Willoughby, D.; Kreider, R.; Taylor, L.; Wilborn, C. The effects of a commercially available botanical supplement on strength, body composition, power output, and hormonal profiles in resistance-trained males. J. Int. Soc. Sports Nutr. 2010, 7, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Romijn, J.A.; Coyle, E.F.; Sidossis, L.S.; Zhang, J.; Wolfe, R.R. Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J. Appl. Physiol. 1995, 79, 1939–1945. [Google Scholar] [CrossRef]
- Cheng, A.L.; Hsu, C.-H.; Lin, J.K.; Hsu, M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; Wu, M.S.; et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21, 2895–2900. [Google Scholar]
- Huang, W.C.; Chiu, W.C.; Chuang, H.L.; Tang, D.W.; Lee, Z.M.; Wei, L.; Chen, F.U.; Huang, C.C. Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients 2015, 7, 905–921. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.M.; Murphy, E.A.; Carmichael, M.D.; Zielinski, M.R.; Groschwitz, C.M.; Brown, A.S.; Gangemi, J.D.; Ghaffar, A.; Mayer, E.P. Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage. Am. J. Regul. Integr. Comp. Physiol. 2007, 292, 2168–2173. [Google Scholar] [CrossRef] [Green Version]
- McFarlin, K.B.; Venable, A.S.; Henning, A.L.; Best Sampson, J.N.; Pannel, K.; Vingren, J.L.; Hill, D.W. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clin. 2016, 5, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Gaskill, S.E.; Ruby, B.C.; Walker, A.J.; Sanchez, O.A.; Serfass, R.C.; Leon, A.S. Validity and reliability of combining three methods to determining ventilatory threshold. Med. Sci. Sports Exerc. 2001, 33, 1841–1848. [Google Scholar] [CrossRef]
- Burnley, M.; Jones, A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef]
- Gaesser, G.A.; Poole, D.C. The slow component of oxygen uptake kinetics in humans. Exerc. Sport Sci. Rev. 1996, 24, 35–70. [Google Scholar] [CrossRef] [PubMed]
- Thin, A.G.; Linnane, S.J.; McKone, E.F.; Freaney, R.; FitzGerald, M.X.; Gallagher, C.G.; McLoughlin, M.B. Use of the gas exchange threshold to noninvasively determine the lactate threshold in patients with cystic fibrosis. Chest 2002, 6, 1761–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malek, M.H.; Housh, T.J.; Coburn, J.W.; Schmidt, R.J.; Beck, T.W. Cross-validation of ventilatory threshold prediction equations on aerobically trained men and women. J. Strength Cond. Res. 2007, 21, 29–33. [Google Scholar] [CrossRef]
- Jones, A.M.; Carter, H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2012, 29, 373–386. [Google Scholar] [CrossRef]
- American College of Sports Medicine; Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription; Walters Kluwer: Philadelphia, PA, USA, 2018; ISBN 978-1-4963-3906-5. [Google Scholar]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Bergstrom, H.C.; Housh, T.J.; Cochrane, K.C.; Jenkins, N.D.M.; Lewis, R.W.; Traylor, D.A.; Zuniga, J.M.; Schmidt, R.J.; Johnson, G.O.; Cramer, J.T.; et al. An examination of neuromuscular and metabolic fatigue thresholds. Physiol. Meas. 2013, 34, 1253–1267. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying test-retest reliability using the intraclass-correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [PubMed]
- Wang, B.; Ogburn, E.L.; Rosenblum, M. Analysis of covariance in randomized trials: More precision and valid confidence intervals, without model assumptions. Biometrics 2019, 75, 1391–1400. [Google Scholar] [CrossRef] [PubMed]
- Camic, C.L.; Housh, T.J.; Mielke, M.; Zuniga, J.M.; Hendrix, R.; Johnson, G.O.; Schmidt, R.J.; Housh, D.J. The effects of 4 weeks of an arginine-based supplement on the gas exchange threshold and peak oxygen uptake. Appl. Physiol. Nutr. Metabol. 2010, 35, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, K.W.; Whipp, B.J.; Koyl, S.N.; Beaver, W.L. Anaerobic threshold and respiratory gas exchange during exercise. Appl. Physiol. 1973, 35, 236–243. [Google Scholar] [CrossRef]
- Powers, S.K.; Howley, E.T. Exercise Physiology: Theory and Application to Fitness and Performance Ninth Edition; Mc-Graw Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Maiorana, A.; O’Driscoll, G.; Taylor, R.; Green, D. Exercise and the nitric oxide vasodilator system. Sports Med. 2003, 33, 1013–1035. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.P.; Pittman, R.N.; Popel, A.S. Nitric oxide in the vasculature: Where does it come from and where does it go? A quantitative perspective. Antioxid. Redox Signal. 2008, 10, 1185–1198. [Google Scholar] [CrossRef] [Green Version]
- Meijssen, S.; Cabezas, M.C.; Ballieux, C.G.M.; Derksen, R.J.; Bilecen, S.; Erkelens, D.W. Insulin mediated inhibition of hormone sensitive lipase activity in vivo in relation to endogenous catecholamines in healthy subjects. J. Clin. Endocrinol. Metab. 2001, 86, 4193–4197. [Google Scholar] [CrossRef]
- Chakrabarti, P.; Kim, J.Y.; Singh, M.; Shin, Y.K.; Kim, J.; Kumbrink, J.; Wu, Y.; Lee, M.J.; Kirsch, K.H.; Fried, S.K.; et al. Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway. Diabetes 2010, 59, 3659–3666. [Google Scholar] [CrossRef] [Green Version]
- Bruce, C.R.; Anderson, M.J.; Carey, A.L.; Newman, D.G.; Bonen, A.; Kriketos, A.D.; Cooney, G.J.; Hawley, J.A. Muscle oxidative capacity is a better predictor of insulin sensitivity than lipid status. J. Clin. Endocrinol. Metab. 2003, 88, 5444–5451. [Google Scholar] [CrossRef] [Green Version]
- Takano, N. Respiratory compensation point during incremental exercise as related to hypoxic chemosensitivity and lactate increase in man. Jpn. J. Physiol. 2000, 50, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Calbet, J.A.; Lundby, C.; Sander, M.; Robach, P.; Saltin, B.; Boushel, R. Effects of ATP-induced leg vasodilation on VO2 peak and leg O2 extraction during maximal exercise in humans. Am. J. Physiol. 2006, 291, 447–453. [Google Scholar]
- Gholaman, M.G.; Gholami, M. Effect of eight weeks’ endurance training along with fenugreek ingestion on lipid profile, body composition, insulin resistance, and VO2max in obese women with type 2 diabetes. J. Med. Plants 2018, 17, 83–92. [Google Scholar]
- Lampe, J.W.; Navarro, S.L.; Hullar, M.A.; Shojaie, A. Inter-individual differences in response to dietary intervention: Integrating omics platforms towards personalised dietary recommendations. Proc. Nutr. Soc. 2013, 72, 207–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swinton, P.H.; Hemingway, B.S.; Saunders, B.; Gualano, B.; Dolan, E. A statistical framework to interpret individual response to intervention: Paving the way for personalized nutrition and exercise prescription. Front. Nutr. 2018, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.D.; Haun, C.T.; Mobly, C.B.; Mumford, P.W.; Romero, M.A.; Robertson, P.A.; Vann, C.G.; McCarthy, J.J. Physiological differences between low versus high skeletal muscle hypertrophic responders to resistance exercise training: Current perspectives and future research directions. Front. Nutr. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
PLA | FEN | CUR | ||||
---|---|---|---|---|---|---|
PRE | POST | PRE | POST | PRE | POST | |
Age (years) | 20.5 ± 1.5 | 20.9 ± 1.4 | 22.1 ± 3.8 | |||
Height (cm) | 175.3 ± 7.6 | 173.5 ± 7.9 | 173.7 ± 9.1 | |||
Body Mass (kg) | 71.3 ± 11.0 | 71.5 ± 11.2 | 76.7 ± 13.0 | 76.7 ± 12.8 | 70.3 ± 16.0 | 70.8 ± 16.5 |
BMI (kg⋅m−2) | 23.1 ± 2.6 | 23.1 ± 2.6 | 25.5 ± 3.9 | 25.5 ± 3.8 | 23.1 ± 3.0 | 23.3 ± 3.1 |
Subject | ||||
---|---|---|---|---|
1 | 3.782 | 3.826 | 1.500 | 1.520 |
2 | 2.876 | 3.164 | 2.118 | 2.287 |
3 | 2.413 | 2.282 | 1.310 | 1.220 |
4 | 3.537 | 3.245 | 1.860 | 1.730 |
5 | 2.065 | 1.921 | 1.170 | 0.980 * |
6 | 3.423 | 3.509 | 1.971 | 1.890 |
7 | 2.472 | 2.289 | 1.400 | 1.300 |
8 | 3.614 | 3.715 | 1.430 | 1.484 |
9 | 2.890 | 3.127 | 1.390 | 1.500 |
10 | 1.578 | 1.403 | 0.990 | 0.925 |
11 | 2.565 | 2.609 | 1.626 | 1.592 |
12 | 2.057 | 2.219 | 1.224 | 1.162 |
13 | 3.308 | 3.464 | 1.599 | 1.561 |
Mean ± SD | 2.814 ± 0.691 | 2.829 ± 0.758 | 1.507 ± 0.325 | 1.473 ± 0.372 |
ICC | 0.971 | 0.959 | ||
SEM | 0.119 | 0.066 | ||
MD | 0.330 | 0.183 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goh, J.; Menke, W.; Herrick, L.P.; Campbell, M.S.; Abel, M.G.; Fleenor, B.S.; Bergstrom, H.C. Examination of Curcumin and Fenugreek Soluble Fiber Supplementation on Submaximal and Maximal Aerobic Performance Indices. J. Funct. Morphol. Kinesiol. 2020, 5, 34. https://doi.org/10.3390/jfmk5020034
Goh J, Menke W, Herrick LP, Campbell MS, Abel MG, Fleenor BS, Bergstrom HC. Examination of Curcumin and Fenugreek Soluble Fiber Supplementation on Submaximal and Maximal Aerobic Performance Indices. Journal of Functional Morphology and Kinesiology. 2020; 5(2):34. https://doi.org/10.3390/jfmk5020034
Chicago/Turabian StyleGoh, Jensen, Walter Menke, Lauren P. Herrick, Marilyn S. Campbell, Mark G. Abel, Bradley S. Fleenor, and Haley C. Bergstrom. 2020. "Examination of Curcumin and Fenugreek Soluble Fiber Supplementation on Submaximal and Maximal Aerobic Performance Indices" Journal of Functional Morphology and Kinesiology 5, no. 2: 34. https://doi.org/10.3390/jfmk5020034
APA StyleGoh, J., Menke, W., Herrick, L. P., Campbell, M. S., Abel, M. G., Fleenor, B. S., & Bergstrom, H. C. (2020). Examination of Curcumin and Fenugreek Soluble Fiber Supplementation on Submaximal and Maximal Aerobic Performance Indices. Journal of Functional Morphology and Kinesiology, 5(2), 34. https://doi.org/10.3390/jfmk5020034