25-Hydroxyvitamin D, Vitamin D Binding Protein, Bioavailable 25-Hydroxyvitamin D, and Body Composition in a Diverse Sample of Women Collegiate Indoor Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.3. Anthropometrics
2.4. Body Composition and Bone Health
2.5. Vitamin D Intake
2.6. Skin Pigmentation
2.7. Blood Sampling and Analyses
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Angeline, M.E.; Gee, A.O.; Shindle, M.; Warren, R.F.; Rodeo, S.A. The effects of vitamin D deficiency in athletes. Am. J. Sports Med. 2013, 41, 461–464. [Google Scholar] [CrossRef]
- Moran, D.S.; McClung, J.P.; Cohen, T.; Lieber, H.R. Vitamin D and physical performance. Sports Med. 2013, 43, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nut. 2004, 80, 1678S–1688S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliday, T.M.; Peterson, N.J.; Thomas, J.J.; Kleppinger, K.; Hollis, B.W.; Larson-Meyer, D.E. Vitamin D status relative to diet, lifestyle, injury, and illness in college athletes. Med. Sci. Sports Exerc. 2011, 43, 335–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremer, R.; Campbell, P.P.; Reinhardt, T.; Gilsanz, V. Vitamin D status and its relationship to body fat, final height, and peak bone mass in young women. J. Clin. Endocrinol. Metab. 2009, 94, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, R.J.; Farooq, A.; Hamilton, B.; Close, G.L.; Wilson, M.G. No association between vitamin D deficiency and markers of bone health in athletes. Med. Sci. Sports Exerc. 2015, 47, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Powe, C.E.; Evans, M.K.; Wenger, J.; Zonderman, A.B.; Berg, A.H.; Nalls, M.; Tamez, H.; Zhang, D.; Bhan, I.; Karumanchi, S.A.; et al. Vitamin D–Binding Protein and vitamin D status of black Americans and white Americans. N. Engl. J. Med. 2013, 369, 1991–2000. [Google Scholar] [CrossRef] [Green Version]
- U.S. Preventive Services Task Force. Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling older adults: Recommendation statement. Am. Fam. Physician 2018, 319, 1592–1599. [Google Scholar]
- Kelly, T.L. Bone mineral reference databases for American men and women. J Bone Min. Res. 1990, 5 (Suppl. 1), S249. [Google Scholar]
- The International Society for Clinical Densitometry. 2019 ISCD Officials Positions–Adult. Available online: https://www.iscd.org/official-positions/2019-iscd-official-positions-adult/ (accessed on 14 March 2020).
- Phan, A.; Gallo, S.; Vanstone, C.; Rodd, C.; Weiler, H. Reproducibility and validity of a food frequency questionnaire for the assessment of vitamin D intake in Canadian lactating women. FASEB J. 2012, 26 (Suppl. 1), 643.3. [Google Scholar]
- United States Department of Agriculture. USA Food Composition Databases. Available online: https://fdc.nal.usda.gov/ (accessed on 14 March 2020).
- Gallo, S.; Phan, A.; Vanstone, C.A.; Rodd, C.; Weiler, H.A. The change in plasma 25-Hydroxyvitamin D did not differ between breast-fed infants that received a daily supplement of ergocalciferol or cholecalciferol for 3 Months. J. Nutr. 2013, 143, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Valle, H.B.D., Eds.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Owens, D.J.; Allison, R.; Close, G.L. Vitamin D and the Athlete: Current Perspectives and New Challenges. Sports Med. 2018, 48, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, D.J.; Sharples, A.P.; Polydorou, I.; Alwan, N.; Donovan, T.; Tang, J.; Fraser, W.D.; Cooper, R.G.; Morton, J.P.; Stewart, C.; et al. A systems based investigation into vitamin D and skeletal muscle repair, regeneration and hypertrophy. Am. J. Physiol. 2015, 309, E1019–E1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovell, G. Vitamin D status of females in an elite gymnastics program. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 2008, 18, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Willis, K.S.; Smith, D.T.; Broughton, K.S.; Larson-Meyer, D.E. Vitamin D status and biomarkers of inflammation in runners. Open Access J. Sports Med. 2012, 3, 35–42. [Google Scholar]
- Pollock, N.; Dijkstra, P.; Chakraverty, R.; Hamilton, B. Low 25(OH) vitamin D concentrations in international UK track and field athletes. S. Afr. J. Sports Med. 2012, 232, 2. [Google Scholar] [CrossRef] [Green Version]
- Maruyama-Nagao, A.; Sakuraba, K.; Suzuki, Y. Seasonal variations in vitamin D status in indoor and outdoor female athletes. Biomed. Rep. 2016, 5, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Patterson, K.Y.; Phillips, K.M.; Horst, R.L.; Byrdwell, W.C.; Exler, J.; Lemar, L.E.; Holden, J.M. Vitamin D content and variability in fluid milks from a US Department of Agriculture nationwide sampling to update values in the National Nutrient Database for Standard Reference. J. Dairy Sci. 2010, 93, 5082–5090. [Google Scholar] [CrossRef]
- Miyauchi, M.; Hirai, C.; Nakajima, H. The solar exposure time required for vitamin D3 synthesis in the human body estimated by numerical simulation and observation in Japan. J. Nutr. Sci. Vitaminol. 2013, 59, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Powe, C.E.; Ricciardi, C.; Berg, A.H.; Erdenesanaa, D.; Collerone, G.; Ankers, E.; Wenger, J.; Karumanchi, S.A.; Thadhani, R.; Bhan, I.; et al. Vitamin D–Binding Protein modifies the vitamin D–bone mineral density relationship. J. Bone Miner. Res. 2011, 26, 1609–1616. [Google Scholar] [CrossRef]
- Laird, E.; Ward, M.; McSorley, E.; Strain, J.J.; Wallace, J. Vitamin D and bone health; Potential mechanisms. Nutrients 2010, 2, 693–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goolsby, M.A.; Boniquit, N. Bone health in athletes: The role of exercise, nutrition, and hormones. Sports Health 2017, 9, 108–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Outila, T.A.; Kärkkäinen, M.U.; Lamberg-Allardt, C.J. Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: Associations with forearm bone mineral density. Am. J. Clin. Nutr. 2001, 74, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Kristinsson, J.O.; Valdimarsson, O.; Sigurdsson, G.; Franzson, L.; Olafsson, I.; Steingrimsdottir, L. Serum 25-hydroxyvitamin D levels and bone mineral density in 16-20 years-old girls: Lack of association. J. Intern. Med. 1998, 243, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Mudd, L.M.; Fornetti, W.; Pivanik, J.M. Bone mineral density in collegiate female athletes: Comparison among sports. J. Athl. Train 2007, 42, 403–408. [Google Scholar] [PubMed]
- Tenforde, A.S.; Carlson, J.L.; Sainani, K.L.; Chang, A.O.; Kim, J.H.; Golden, N.H.; Fredericson, M. Sport and triad risk factors influence bone mineral density in collegiate athletes. Med. Sci. Sports Exerc. 2018, 50, 2536–2543. [Google Scholar] [CrossRef]
- Allison, R.J.; Farooq, A.; Cherif, A.; Hamilton, B.; Close, G.L.; Wilson, M.G. Why don’t serum vitamin D concentrations associate with BMD by DXA? A case of being “bound” to the wrong assay? Implications for vitamin D screening. Br. J. Sports Med. 2018, 52, 522–526. [Google Scholar] [CrossRef]
- Gutierrez, O.M.; Farwell, W.R.; Kermah, D.; Taylor, E.N. Racial differences in the relationship between vitamin D, bone mineral density, and parathyroid hormone in the National Health and Nutrition Examination Survey. Osteoporos. Int. 2011, 22, 1745–1753. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Oh, I.H.; Baek, H.J.; Lee, C.H.; Lee, S.S. Effects of sun exposure and dietary vitamin D intake on serum 25-hydroxyvitamin D status in hemodialysis patients. Nutr. Res. Pract. 2015, 9, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.; Maseeh, A. Vitamin D: The “sunshine” vitamin. J. Pharmacol. Pharmacother. 2012, 3, 118–126. [Google Scholar]
- Binkley, N.; Novotny, R.; Krueger, D.; Kawahara, T.; Daida, Y.G.; Lensmeyer, G.; Hollis, B.W.; Drezner, M.K. Low Vitamin D status despite abundant sun exposure. J. Clin. Endocrinol. Metab. 2007, 92, 2130–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddock, L.; Corcino, J.; Vazques, M.D. 25(OH)D serum levels in the normal Puerto Rican population and in subjects with tropical sprue and parathyroid disease. P. R. Health Sci. 1982, 1, 85–91. [Google Scholar]
- Hagenau, T.; Vest, R.; Gissel, T.N.; Poulsen, C.S.; Erlandsen, M.; Mosekilde, L.; Vestergaard, P. Global vitamin D levels in relation to age, gender, skin pigmentation and latitude: An ecological meta-regression analysis. Osteoporos. Int. 2009, 20, 133. [Google Scholar] [CrossRef] [PubMed]
- Villacis, D.; Yi, A.; Jahn, R.; Kephart, C.J.; Charlton, T.; Gamradt, S.C.; Romano, R.; Tibone, J.E.; Hatch, G.F.R., III. Prevalence of Abnormal Vitamin D Levels Among Division I NCAA Athletes. Sports Health Multidiscip. Approach 2014, 6, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Del Bino, S.; Sok, J.; Bessac, E.; Bernerd, F. Relationship between skin response to ultraviolet exposure and skin color type. Pigment Cell Res. 2006, 19, 606–614. [Google Scholar] [CrossRef]
- Vieth, R. Why the optimal requirement for Vitamin D3 is probably much higher than what is officially recommended for adults. J. Steroid Biochem. 2004, 89, 575–579. [Google Scholar] [CrossRef]
- Chen, T.C.; Chimeh, F.; Lu, Z.; Mathieu, J.; Person, K.S.; Zhang, A.; Kohn, N.; Martinello, S.; Berkowitz, R.; Holick, M.F. Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch. Biochem. Biophys. 2007, 460, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Heller, J.E.; Thomas, J.J.; Hollis, B.W.; Larson-Meyer, D.E. Relation between vitamin D status and body composition in collegiate athletes. Sport Nutr. Exerc. Metab. 2015, 25, 128–135. [Google Scholar] [CrossRef]
- Hamilton, B.; Whitely, R.; Farooq, A.; Chalabi, H. Vitamin D concentration in 342 professional football players and association with lower limb isokinetic function. J. Sci. Med. Sport 2014, 17, 139–143. [Google Scholar] [CrossRef]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef]
- Forney, A.; Earnest, C.P.; Henegan, T.; Johnson, L.E.; Castleberry, T.J.; Stewart, L.K. Vitamin D status, body composition, and fitness measures in college-aged students. J. Strength Cond. Res. 2014, 28, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Cassity, E.P.; Redzic, M.; Teager, C.R.; Thomas, D.T. The effect of body composition and BMI on 25(OH)D responses in vitamin D-supplemented athletes. Eur. J. Sport Sci. 2016, 16, 773–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagunova, Z.; Porojnicu, A.C.; Lindberg, F.; Hexeberg, S.; Moan, J. The dependency of vitamin D status on body mass index, gender, age, and season. Anticancer Res. 2009, 29, 3713–3720. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall (n = 36) | WVB (n = 12) | WBB (n = 12) | WTF (n = 12) | p-Value |
---|---|---|---|---|---|
Age (years) | 19.4 ± 1.4 | 19.2 ± 1.3 | 20.2 ± 1.6 | 19.0 ± 0.8 | 0.274 |
Skin pigmentation | 0.242 | ||||
Very fair/fair (41–55°) | 17(47) | 8(67) | 6(50) | 3(25) | |
Medium (28–41°) | 2(6) | 1(8) | 0(0) | 1(8) | |
Olive/dark (0–28°) | 17(47) | 3(25) | 6(50) | 8(67) | |
Sun exposure, reported (min/day) | 0.051 | ||||
≤10 min | 18(50) | 8(66) | 8(66) | 2(16) | |
30–40 min | 14(38) | 4(33) | 4(33) | 6(50) | |
1–2 h | 2(5) | 0(0) | 0(0) | 2(16) | |
≥2 h | 2(5) | 0(0) | 0(0) | 2(16) | |
Dietary intake and supplementation (IU/d) | 501.9 ± 417.4 | 342.6 ± 257.8 | 760.9 ± 484.2 | 402.3 ± 376.4 | 0.005 |
Anthropometrics | |||||
Body height (cm) | 172.75 ± 8.21 | 173.25 ± 5.77 | 177.72 ± 9.81 | 167.33 ± 5.21 | 0.005 |
Body mass(kg) | 70.91 ± 13.22 | 71.81 ± 9.62 | 80.33 ± 15.82 | 60.75 ± 4.51 | <0.001 |
Body mass index (kg/m2) | 23.7 ± 3.2 | 24.1 ± 2.5 | 25.3 ± 4.2 | 21.3 ± 1.4 | 0.001 |
Body Composition | |||||
Body fat (%) | 22.9 ± 4.1 | 24.0 ± 3.1 | 25.0 ± 3.9 | 19.6 ± 2.7 | 0.001 |
Fat mass (kg) | 17.1 ± 6.0 | 17.8 ± 3.9 | 20.9 ± 7.3 | 12.2 ± 2.2 | 0.001 |
Lean body mass (kg) | 52.3 ± 7.3 | 53.2 ± 6.3 | 57.7 ± 7.7 | 47.4 ± 3.4 | 0.078 |
Whole body BMD (g/m2) | 1.12 ± 0.20 | 1.12 ± 0.08 | 1.13 ± 0.68 | 1.11 ± 0.35 | 0.744 |
Whole body Z-Score | 1.31 ± 0.87 | 1.78 ± 1.17 | 1.38 ± 0.33 | 0.80 ± 0.407 | 0.070 |
Hip BMD (g/m2) | 1.19 ± 0.10 | 1.21 ± 0.13 | 1.21 ± 0.11 | 1.16 ± 0.77 | 0.495 |
Hip Z-score | 1.59 ± 0.98 | 2.04 ± 1.29 | 1.71 ± 0.702 | 1.06 ± 0.66 | 0.044 |
Spine BMD (g/m2) | 1.18 ± 0.11 | 1.18 ± 0.13 | 1.23 ± 0.12 | 1.14 ± 0.08 | 0.171 |
Spine Z-score | 1.19 ± 0.99 | 1.31 ± 1.15 | 1.55 ± 0.94 | 0.708 ± 0.730 | 0.101 |
Biochemistry | |||||
25(OH)D (nmol/L) | 70.5 ± 32.25 | 87.5 ± 44.0 | 60.0 ± 44.0 | 69.5 ± 15.75 | 0.197 |
25(OH)D category | 0.159 | ||||
≤50 nmol/L | 10(28) | 3(25) | 6(50) | 1(8) | |
50–75 nmol/L | 12(33) | 3(25) | 4(33) | 5(42) | |
≥75 nmol/L | 14(39) | 6(50) | 2(17) | 6(50) | |
Vitamin D binding protein (μg/mL) | 437.1 ± 112.6 | 416.7 ± 107.5 | 447.8 ± 115.5 | 447.5 ± 122.2 | 0.754 |
Bioavailable 25(OH)D (nmol/L)1 | 4.25 ± 1.75 | 5.24 ± 2.0 | 3.25 ± 1.5 | 4.5 ± 1.25 | 0.012 |
Body Composition Variables | Circulating 25(OH)D (nmol/L) β (95% CI) | p-Value | VDBP (μg/mL) β (95% CI) | p-Value | Bioavailable 25(OH)D (nmol/L) β (95% CI) | p-Value |
---|---|---|---|---|---|---|
Whole-body BMD (g/m2) | 0.069 (−0.216–0.354) | 0.624 | 0.000 (−0.180–0.104) | 0.703 | −0.038 (−0.180–0.104) | 0.586 |
Hip BMD (g/m2) | 0.159 (−0.094–0.412) | 0.209 | 0.000 (−0.001–0.000) | 0.135 | −0.076 (−0.205–0.053) | 0.240 |
Spine BMD (g/m2) | −0.037 (−0.215–0.288) | 0.766 | 0.000 (−0.001–0.001) | 0.920 | −0.067 (−0.153–0.102) | 0.685 |
LBM (kg) | 0.036 (−1.023–1.095) | 0.945 | −0.001 (−0.004–0.002) | 0.540 | −0.133 (−0.192–0.058) | 0.283 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fields, J.B.; Gallo, S.; Worswick, J.M.; Busteed, D.R.; Jones, M.T. 25-Hydroxyvitamin D, Vitamin D Binding Protein, Bioavailable 25-Hydroxyvitamin D, and Body Composition in a Diverse Sample of Women Collegiate Indoor Athletes. J. Funct. Morphol. Kinesiol. 2020, 5, 32. https://doi.org/10.3390/jfmk5020032
Fields JB, Gallo S, Worswick JM, Busteed DR, Jones MT. 25-Hydroxyvitamin D, Vitamin D Binding Protein, Bioavailable 25-Hydroxyvitamin D, and Body Composition in a Diverse Sample of Women Collegiate Indoor Athletes. Journal of Functional Morphology and Kinesiology. 2020; 5(2):32. https://doi.org/10.3390/jfmk5020032
Chicago/Turabian StyleFields, Jennifer B., Sina Gallo, Jenna M. Worswick, Deanna R. Busteed, and Margaret T. Jones. 2020. "25-Hydroxyvitamin D, Vitamin D Binding Protein, Bioavailable 25-Hydroxyvitamin D, and Body Composition in a Diverse Sample of Women Collegiate Indoor Athletes" Journal of Functional Morphology and Kinesiology 5, no. 2: 32. https://doi.org/10.3390/jfmk5020032
APA StyleFields, J. B., Gallo, S., Worswick, J. M., Busteed, D. R., & Jones, M. T. (2020). 25-Hydroxyvitamin D, Vitamin D Binding Protein, Bioavailable 25-Hydroxyvitamin D, and Body Composition in a Diverse Sample of Women Collegiate Indoor Athletes. Journal of Functional Morphology and Kinesiology, 5(2), 32. https://doi.org/10.3390/jfmk5020032