Do Non-Circular Chainrings Enhance Cycling Performance? A Systematic Review of Randomized Crossover Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Databases and Inclusion Criteria
2.3. Quality of Studies and Risk of Bias
2.4. Data Extraction
3. Results
3.1. Search, Selection, and Inclusion of Studies
3.2. Risk of Bias Assessment
3.3. General Description of the Studies
3.4. Physiological Effects of Non-Circular Chainrings
3.5. Effects of Non-Circular Chainrings on Performance Outcomes
4. Discussion
4.1. Physiological Outcomes
4.2. Performance Outcomes
4.3. Limitations and Future Research Recommendations
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
M | Male |
F | Female |
MPO | Maximal power output |
PO | Power output |
MAP | Maximum aerobic power output |
VO2max | Maximum oxygen consumption |
HR | Heart rate |
Bla | Blood lactate concentration |
EMG | Electromyography |
RER | Respiratory exchange ratio |
TT | Time trial |
N/A | Not available |
TMG | Tensiomiography |
BMX | Bicycle motocross |
References
- Marck, A.J.; Antero, G.; Berthelot, G.; Saulière, J.-M.; Jancovici, V.; Masson-Delmotte, V.; Boeuf, G.; Spedding, M.; Bourg, É.L. Are we reaching the limits of homo sapiens? Front. Physiol. 2017, 8, 812. [Google Scholar] [CrossRef]
- Phillips, K.E.; Hopkins, W.G. Determinants of cycling performance: A review of the dimensions and features regulating performance in elite cycling competitions. Sports Med. Open 2020, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Turpin, N.A.; Watier, B. Cycling biomechanics and its relationship to performance. Appl. Sci. 2020, 10, 4112. [Google Scholar] [CrossRef]
- Carpes, F.P.; Dagnese, F.; Mota, C.B.; Stefanyshyn, D.J. Cycling with noncircular chainring system changes the three-dimensional kinematics of the lower limbs. Sports Biomech. 2009, 8, 275–283. [Google Scholar] [CrossRef]
- Maia, F.; Nakamura, F.Y.; Sarmento, H.; Marcelino, R.; Ribeiro, J. Effects of lower-limb intermittent pneumatic compression on sports recovery: A systematic review and meta-analysis. Biol. Sport. 2024, 41, 263–275. [Google Scholar] [CrossRef]
- Wei, R.J.; Orbeta, L.; Hatamiya, N.S.; Chang, C.J. Nutritional strategies for endurance cyclists—Periodized nutrition, ketogenic diets, and other considerations. Curr. Sports Med. Rep. 2023, 22, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Cesanelli, L.; Indaburu, A. Evaluation of strategy and tactics in cycling: A systematic review of evaluation methods and possible performance implications. J. Sports Med. Phys. Fit. 2020, 61, 810–817. [Google Scholar] [CrossRef]
- DeGolier, E.; Cibinel, A.; Barnes, C. Validation of Body Rocket On-Bike Wind-Tunnel Technology: Drag Measurement Accuracy and Aerodynamic Gains Sensitivity. J. Sci. Cycl. 2024, 13, 22–28. [Google Scholar]
- Koçak, F.; Pinar, S.; Ertan, H. Effects of Different Chainring Designs on Cycling Performance: Oval Versus Circular. Sport. Bakış Spor Ve Eğitim Bilim. Dergisi 2024, 11, 113–121. [Google Scholar] [CrossRef]
- Strutzenberger, G.; Wunsch, T.; Kroell, J.; Dastl, J.; Schwameder, H. Effect of chainring ovality on joint power during cycling at different workloads and cadences. Sports Biomech. 2014, 13, 97–108. [Google Scholar] [CrossRef]
- Sinclair, J.; Stainton, P.; Sant, B. The effects of conventional and oval chainrings on patellofemoral loading during road cycling: An exploration using musculoskeletal simulation. Sport. Sci. Health 2017, 14, 61–70. [Google Scholar] [CrossRef]
- Ratel, S.; Duché, P.; Hautier, C.A.; Williams, C.A.; Bedu, M. Physiological responses during cycling with noncircular “Harmonic” and circular chainrings. Eur. J. Appl. Physiol. 2003, 91, 100–104. [Google Scholar] [PubMed]
- Hull, M.L.; Williams, K.; Kautz, S. Physiological response to cycling with both circular and noncircular chainrings. Med. Sci. Sports Exerc. 1992, 24, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Leong, C.-H.; Elmer, S.J.; Martin, J.C. Noncircular Chainrings Do Not Influence Maximum Cycling Power. J. Appl. Biomech. 2017, 33, 410–418. [Google Scholar] [CrossRef]
- Peiffer, J.J.; Abbiss, C.R. The Influence of Elliptical Chainrings on 10 km Cycling Time Trial Performance. Int. J. Sports Physiol. Perform. 2010, 5, 459–468. [Google Scholar] [CrossRef]
- Cordova, A.; Latasa, I.; Seco, J.; Villa, G.; Rodriguez-Falces, J. Physiological Responses during Cycling with Oval Chainrings (Q-Ring) and Circular Chainrings. J. Sports Sci. Med. 2014, 13, 410–416. [Google Scholar] [PubMed]
- Hintzy, F.; Grappe, F.; Belli, A. Effects of a Non-Circular Chainring on Sprint Performance During a Cycle Ergometer Test. J. Sports Sci. Med. 2016, 15, 223–228. [Google Scholar]
- Hue, O.; Chamari, K.; Damiani, M.; Blonc, S.; Hertogh, C. The use of an eccentric chainring during an outdoor 1km all-out cycling test. J. Sci. Med. Sport. 2007, 10, 180–186. [Google Scholar] [CrossRef]
- Mateo-March, M.; Fernández-Peña, E.; Blasco-Lafarga, C.; Morente-Sánchez, J.; Zabala, M. Does a non-circular chainring improve performance in the bicycle motocross cycling start sprint? J. Sports Sci. Med. 2014, 13, 97–104. [Google Scholar]
- Bini, R.R.; Dagnese, F. Noncircular chainrings and pedal to crank interface in cycling: A literature review. Rev. Bras. De Cineantropometria Desempenho Humano 2012, 14, 470–482. [Google Scholar]
- Lathyris, D.N.; Trikalinos, T.A.; Ioannidis, J.P. Evidence from crossover trials: Empirical evaluation and comparison against parallel arm trials. Int. J. Epidemiol. 2007, 36, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 372, n71. [Google Scholar]
- McKay, A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Cullen, L.K.; Andrew, K.; Lair, K.R.; Widger, M.J.; Timson, B.F. Efficiency of trained cyclists using circular and noncircular chainrings. Int. J. Sports Med. 1992, 13, 264–269. [Google Scholar] [CrossRef]
- Dagnese, F.; Carpes, F.P.; Martins, E.d.A.; Stefanyshyn, D.; Mota, C.B. Effects of a noncircular chainring system on muscle activation during cycling. J. Electromyogr. Kinesiol. 2011, 21, 13–17. [Google Scholar] [CrossRef]
- Hintzy, F.; Horvais, N. Non-circular chainring improves aerobic cycling performance in non-cyclists. Eur. J. Sport. Sci. 2015, 16, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Horvais, N.; Samozino, P.; Zameziati, K.; Hautier, C.; Hintzy, F. Effects of a non circular chainring on muscular, mechanical and physiological parameters during cycle ergometer tests. Isokinet. Exerc. Sci. 2007, 15, 271–279. [Google Scholar] [CrossRef]
- Leong, C.-H.; Elmer, S.J.; Martin, J.C. Noncircular Chainrings Do Not Influence Physiological Responses During Submaximal Cycling. Int. J. Sports Physiol. Perform. 2022, 17, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Mateo-March, M.; Zabala, M.; González-Badillo, J. Effects of the orientation of the maximum torque point with a Q-RingTM non-circular chainring system on the BMX cycling sprint performance. Sci. Sports 2012, 27, E15–E19. [Google Scholar] [CrossRef]
- Rodríguez-Marroyo, J.A.; García-López, J.; Chamari, K.; Córdova, A.; Hue, O.; Villa, J.G. The rotor pedaling system improves anaerobic but not aerobic cycling performance in professional cyclists. Eur. J. Appl. Physiol. 2009, 106, 87–94. [Google Scholar] [CrossRef]
- Vikmoen, O.; Rønnestad, B.R. A comparison of the effect of strength training on cycling performance between men and women. J. Funct. Morphol. Kinesiol. 2021, 6, 29. [Google Scholar] [CrossRef]
- Tibana, R.A.; de Sousa, N.M.F.; Prestes, J.; Nascimento, D.d.C.; Ernesto, C.; Neto, J.H.F.; Kennedy, M.D.; Voltarelli, F.A. Is Perceived Exertion a Useful Indicator of the Metabolic and Cardiovascular Responses to a Metabolic Conditioning Session of Functional Fitness? Sports 2019, 7, 161. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.; Ross, A.; Martin, J.C. Maximal muscular power: Lessons from sprint cycling. Sports Med. Open 2021, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Castaño, M.V.; Albesa-Albiol, L.; Serra-Payá, N.; Bataller, M.G.; Felíu-Ruano, R.; Cano, L.G.; Cobo, E.P.; Maté-Muñoz, J.L. The Slow Component of Oxygen Uptake and Efficiency in Resistance Exercises: A Comparison with Endurance Exercises. Front. Physiol. 2019, 10, 357. [Google Scholar] [CrossRef]
- Leo, P.; Spragg, J.; Podlogar, T.; Lawley, J.S.; Mujika, I. Power profiling and the power-duration relationship in cycling: A narrative review. Eur. J. Appl. Physiol. 2021, 122, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Dunst, A.K.; Grüneberger, R.; Holmberg, H.-C. Modeling optimal cadence as a function of time during maximal sprint exercises can improve performance by elite track cyclists. Appl. Sci. 2021, 11, 12105. [Google Scholar] [CrossRef]
P | Participants from Recreational to Elite Competitive Level (≥Tier 2 to Tier 5) |
---|---|
I | Use of non-circular chainrings, without restriction on physical task, duration, etc. |
C | Traditional (circular) chainrings |
O | Physiological (e.g., VO2max, heart rate) and performance (e.g., time trial performance, power output) |
S | Randomized crossover trials |
Author | Category(ies) | Participants (Number, Tier, Age *, Sex) | Methods | Results |
---|---|---|---|---|
Cordova et al. [16] | Physiological and Performance | 14, Tier 3, 21.1 ± 2.1, M | Two incremental maximal tests (C-rings and Q-rings), followed by maximal sprints | MPO, VO2max, HR, Bla, EMG ↔ |
Cullen et al. [24] | Physiological | 7, Tier 2, 29.4 ± 3.5, M | Three x 60 min across three pedal cadences (C-rings and Q-rings) | VO2max, HR, RER, RPE ↔ |
Dagnese et al. [25] | Physiological and Performance | 7, Tier 3, 25.0 ± 4.0, M | Two incremental maximal tests (C-rings and Q-rings) | MPO, pedaling cadence, HR, test duration, EMG ↔ |
Hintzy et al. [17] | Performance | 20, Tier 3, 24.0 ± 6.0, M | Four 8 s sprint tests (C-rings and Q-rings) | MPO, PO, pedal downforce ↑ |
Hintzy et al. [26] | Physiological and Performance | 10, Tier 2, 22.3 ± 1.8, M | Two incremental maximal tests (C-rings and Q-rings) | VO2max, HR, RER↔ MAP ↑ |
Horvais et al. [27] | Physiological and Performance | 12, Tier 3, 32.0 ± 6.7, M | 8 min submaximal tests followed by two 8 s maximal sprints (C-rings and Q-rings) | VO2max, HR ↔ pedaling cadence, EMG ↑ |
Hue et al. [18] | Physiological and Performance | 12, Tier 3, 17.4 ± 0.3, M | Two 1000 m time trials (C-rings and Q-rings) | TT, VO2max, HR, Bla, velocity profile ↔ |
Hull et al. [13] | Physiological | 11, Tier 3, 24 ± 3.4, M | Four submaximal constant-work-rate tests (2x C-rings and 2x Q-rings) | VO2max, HR, Bla ↓ |
Koçak et al. [9] | Physiological and Performance | 20, Tier 4, 19.9 ± 1.9, M | Two incremental maximal tests (C-rings and Q-rings) | HR, pedaling cadence ↔ VO2max, PO ↑ |
Leong et al. [14] | Performance | Part-1 13, Tier 2, 33 ± 7, 12M/1F Part 2–10, Tier 2, 34 ± 7, 8M/2F | Part 1—Three maximal inertial load tests (1x C-ring and 2x Q-rings); Part 2—Three maximal isokinetic tests (1x C-ring and 2x Q-rings) | MPO, pedaling cadence, joint-specific PO ↔ |
Leong et al. [28] | Physiological | 8, Tier 3, 35.0 ± 8.0 cyclists, 7M/1F | Three submaximal tests (1x C-ring and 2x Q-rings) | VO2max, HR, RER, RPE; ↔ |
Mateo-March et al. [19] | Physiological and Performance | 16, Tier 3 and 4 (cadets vs. elites), 23.3 ± 0.9, M | Two sprint bouts (C-rings and Q-rings) | VO2max, HR, Bla ↔ Elite group—total distance ↑ Cadet group—MPO ↓ |
Mateo-March et al. [29] | Performance | 14, Tier 3, 20.0 ± 3.2, M | 6 sprinting bouts (1x C-ring and 5x Q-rings) | Acceleration ↑ Velocity ↑ |
Peiffer et al. [15] | Physiological and Performance | 9, Tier 3, 31.0 ± 6.0, M | Three 10 km cycling time trials (1x C-ring and 2x Q-rings) | PO, HR, RPE, TT, cycling economy ↔ |
Ratel et al. [12] | Physiological | 13, Tier 3, 28.7 ± 7.4, M | Two maximal graded exercises (C-rings and Q-rings) | VO2max, HR, RER, Bla ↔ |
Rodriguez-Marroyo et al. [30] | Physiological and Performance | 15, Tier 4, 24 ± 1, M | Incremental test, submaximal test, and Wingate anaerobic tests (1x C-ring and 2x Q-rings) | Aerobic tests—VO2max, HR ↔ Anaerobic tests—MPO, PO ↑ |
Sinclair et al. [11] | Performance | 15, Tier 2, 28.1 ± 5.1, M | Two 10 min fixed cadence tests (C-rings and Q-rings) | Patellofemoral force and loading ↔ |
Strutzenberger et al. [10] | Performance | 14, Tier 4, N/A, M | Three 12 min incremental tests (1x C-ring and 2x Q-rings) | Knee and hip joint power ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maia, F.; Sousa, H.; Garcia-Garcia, O.; Pimenta, R.; Santiago, P.; Vigário, P.C.; Torres, G.; Nakamura, F.Y. Do Non-Circular Chainrings Enhance Cycling Performance? A Systematic Review of Randomized Crossover Trials. J. Funct. Morphol. Kinesiol. 2025, 10, 233. https://doi.org/10.3390/jfmk10030233
Maia F, Sousa H, Garcia-Garcia O, Pimenta R, Santiago P, Vigário PC, Torres G, Nakamura FY. Do Non-Circular Chainrings Enhance Cycling Performance? A Systematic Review of Randomized Crossover Trials. Journal of Functional Morphology and Kinesiology. 2025; 10(3):233. https://doi.org/10.3390/jfmk10030233
Chicago/Turabian StyleMaia, Filipe, Henrique Sousa, Oscar Garcia-Garcia, Ricardo Pimenta, Paulo Santiago, Pedro Castro Vigário, Gonçalo Torres, and Fábio Yuzo Nakamura. 2025. "Do Non-Circular Chainrings Enhance Cycling Performance? A Systematic Review of Randomized Crossover Trials" Journal of Functional Morphology and Kinesiology 10, no. 3: 233. https://doi.org/10.3390/jfmk10030233
APA StyleMaia, F., Sousa, H., Garcia-Garcia, O., Pimenta, R., Santiago, P., Vigário, P. C., Torres, G., & Nakamura, F. Y. (2025). Do Non-Circular Chainrings Enhance Cycling Performance? A Systematic Review of Randomized Crossover Trials. Journal of Functional Morphology and Kinesiology, 10(3), 233. https://doi.org/10.3390/jfmk10030233