Validity and Reliability of 2D Video Analysis for Swimming Kick Start Kinematics
Abstract
:1. Introduction
2. Materials and Methods
- Procedure
- Instrumentation
- Concurrent Validity
- Intrarater and Interrater Reliability
- Test–Retest Reliability
- Statistical Analysis
3. Results
4. Discussion
- Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Arellano, R.; Ruiz-Navarro, J.J.; Barbosa, T.M.; López-Contreras, G.; Morales-Ortíz, E.; Gay, A.; López-Belmonte, Ó.; González-Ponce, Á.; Cuenca-Fernández, F. Are the 50 m Race Segments Changed From Heats to Finals at the 2021 European Swimming Championships? Front. Physiol. 2022, 13, 797367. [Google Scholar] [CrossRef] [PubMed]
- World Aquatics. Results Olympic Games Tokyo. 2020. Available online: https://www.worldaquatics.com/competitions/5/olympic-games-tokyo-2020/results (accessed on 20 September 2024).
- Barlow, H.; Halaki, M.; Stuelcken, M.; Greene, A.; Sinclair, P.J. The Effect of Different Kick Start Positions on OMEGA OSB11 Blocks on Free Swimming Time to 15 m in Developmental Level Swimmers. Hum. Mov. Sci. 2014, 34, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Tor, E.; Pease, D.L.; Ball, K.A. Comparing Three Underwater Trajectories of the Swimming Start. J. Sci. Med. Sport 2015, 18, 725–729. [Google Scholar] [CrossRef]
- Peterson Silveira, R.; Stergiou, P.; Figueiredo, P.; Castro, F.S.; Katz, L.; Stefanyshyn, D.J. Key Determinants of Time to 5 m in Different Ventral Swimming Start Techniques. Eur. J. Sport Sci. 2018, 18, 1317–1326. [Google Scholar] [CrossRef]
- Matúš, I.; Vadašová, B.; Eliáš, T.; Rydzik, Ł.; Ambroży, T.; Czarny, W. Foot Placement in the Basic Position on the Start Block OSB12 of Young Competitive Swimmers. Sports 2024, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- McLean, S.G.; Walker, K.; Ford, K.R.; Myer, G.D.; Hewett, T.E.; van den Bogert, A.J. Evaluation of a Two Dimensional Analysis Method as a Screening and Evaluation Tool for ACL Injury. Br. J. Sports Med. 2005, 39, 355–362. [Google Scholar] [CrossRef]
- Hollman, J.H.; Ginos, B.E.; Kozuchowski, J.; Vaughn, A.S.; Krause, D.A.; Youdas, J.W. Relationships between Knee Valgus, Hip-Muscle Strength, and Recruitment. J. Sport Rehabil. 2009, 18, 104–117. [Google Scholar] [CrossRef]
- Herrington, L.; Munro, A. Drop Jump Landing Knee Valgus Angle: Normative Data in a Physically Active Population. Phys. Ther. Sport 2010, 11, 56–59. [Google Scholar] [CrossRef]
- Arellano, R.; Pardillo, S.; De La Fuente, B.; Garcia, F. A system to improve the swimming start technique using force recording, timing and kinematic analyses. In Proceedings of the XVIII Symposium on Biomechanics in Sports: Applied Program: Application of Biomechanical Study in Swimming, Hong Kong, China, 25–30 June 2000; Sanders, R., Hong, Y., Eds.; pp. 609–613. [Google Scholar]
- Slawson, S.E.; Chakravorti, N.; Conway, P.P.; Cossor, J.; West, A.A. The Effect of Knee Angle on Force Production in Swimming Starts Using the OSB11 Block. Procedia Eng. 2012, 34, 801–806. [Google Scholar] [CrossRef]
- Honda, K.; Sinclair, P.; Mason, B.; Pease, D. The Effect of Starting Position on Elite Swim Start Performance Using an Angled Kick Plate. In Proceedings of the 30 International Conference on Biomechanics in Sports, Melbourne, Australia, 2–6 July 2012; pp. 72–75. [Google Scholar]
- Ozeki, K.; Sakurai, S.; Taguchi, M.; Takise, S. Kicking the Back Plate of the Starting Block Improves Start Phase Performance in Competitive Swimming. In Proceedings of the 30 International Conference on Biomechanics in Sports, Melbourne, Australia, 2–6 July 2012; pp. 373–376. [Google Scholar]
- Lee, C.-Y.; Huang, C.-F.; Lee, C.-W. Biomechanical Analysis of the Grab and Track Swimming Starts. In Proceedings of the 30 International Conference on Biomechanics in Sports, Melbourne, Australia, 2–6 July 2012. Technical Report. [Google Scholar]
- van Dijk, M.P.; Beek, P.J.; van Soest, A.J.K. Predicting Dive Start Performance from Kinematic Variables at Water Entry. PLoS ONE 2020, 15, e0241345. [Google Scholar] [CrossRef]
- Hermosilla, F.; Yustres, I.; Psycharakis, S.; Santos del Cerro, J.; González-Mohíno, F.; González-Rave, J.M. Which Variables May Affect Underwater Glide Performance after a Swimming Start? Eur. J. Sport Sci. 2022, 22, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Norris, B.S.; Olson, S.L. Concurrent Validity and Reliability of 2D Video Analysis of Hip and Knee Motion. Physiother. Theory Pract. 2011, 27, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hermoso, A.; Escalante, Y.; Arellano, R.; Navarro, F.; Domínguez, A.M.; Saavedra, J.M. Relationship Between Performance and Block Times with Starting Platforms. J. Sports Sci. Med. 2013, 12, 698–706. [Google Scholar]
- Morais, J.E.; Marinho, D.A.; Arellano, R.; Barbosa, T.M. Start and Turn Performances of Elite Sprinters. Sports Biomech. 2019, 18, 100–114. [Google Scholar] [CrossRef]
- Cuenca-Fernández, F.; Ruiz-Navarro, J.J.; González-Ponce, A.; López-Belmonte, Ó.; Gay, A.; Arellano, R. Progression and Variation of Competitive 100 and 200m Performance at the 2021 European Swimming Championships. Sports Biomech. 2020, 23, 1–16. [Google Scholar] [CrossRef]
- Taladriz, S.; de la Fuente-Caynzos, B.; Arellano, R. Analysis of Angular Momentum Effect on Swimming Kick-Start Performance. J. Biomech. 2016, 49, 1789–1793. [Google Scholar] [CrossRef]
- Takeda, T.; Sakai, S.; Takagi, H.; Okuno, K.; Tsubakimoto, S. Contribution of hand and foot force to take-off velocity for the kick-start in competitive swimming. J. Sports Sci. 2017, 35, 565–571. [Google Scholar] [CrossRef]
- Sanders, R.H.; Gonjo, T.; McCabe, C.B. Reliability of Three-Dimensional Angular Kinematics and Kinetics of Swimming Derived from Digitized Video. J. Sports Sci. Med. 2016, 15, 158–166. [Google Scholar]
- Matúš, I.; Ružbarský, P.; Vadašová, B. Key Parameters Affecting Kick Start Performance. Int. J. Environ. Res. Public Health 2021, 18, 11909. [Google Scholar] [CrossRef]
- Rudnik, D.; Rejman, M.; Machado, L.; Fernandes, R.J.; Vilas-Boas, J.P. Influence of Back Plate Position on Start Characteristics. Int. J. Environ. Res. Public Health 2022, 19, 2722. [Google Scholar] [CrossRef]
- Veiga, S.; Roig, A. Effect of Starting and Turning on Swimming Parameters. Sports Biomech. 2017, 16, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Wądrzyk, Ł.; Staszkiewicz, R. Swim Start Time and Lower Limb Power Among Youth. J. Kinesiol. Exerc. Sci. 2018, 28, 57–68. [Google Scholar] [CrossRef]
- Allen, T.; Hollingham, Z.; MacWhirter, J.; Welsh, M.; Negm, A.; Adachi, J.D.; MacIntyre, N.J. Inter-Rater Reliability of Dartfish TM Software in Hip and Knee Motion in Older Adults. Physiother. Theory Pract. 2019, 35, 577–585. [Google Scholar] [CrossRef]
- Jeffreys, I. RAMP Warm-Ups: More Than Simply Short-Term Preparation. Prof. Strength Cond. 2017, 44, 17–23. [Google Scholar]
- Fleiss, J. Design and Analysis of Clinical Experiments; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Raper, D.P.; Witchalls, J.; Philips, E.J.; Knight, E.; Drew, M.K.; Waddington, G. Use of a tibial accelerometer to measure ground reaction force in running: A reliability and validity comparison with force plates. J. Sci. Med. Sport 2018, 21, 84–88. [Google Scholar] [CrossRef]
- Barghamadi, M.; Sheikhalizade, H.; Meamarbashi, A.; Panahi, H.; Barghamadi, S. Reaction Time Platform for Swimming Starts. J. Adv. Sport Technol. 2019, 5, 70–76. [Google Scholar] [CrossRef]
- de Jesus, K.; Mourão, L.; Roesler, H.; Viriato, N.; Vaz, M.A.; Fernandes, R.J.; Vilas-Boas, J.P. 3D Device for Forces in Swimming Starts and Turns. Appl. Sci. 2019, 9, 3559. [Google Scholar] [CrossRef]
- Thng, S.; Pearson, S.; Rathbone, E.; Keogh, J.W.L. The prediction of swim start performance based on squat jump force-time characteristics. PeerJ 2020, 8, e9208. [Google Scholar] [CrossRef]
- Burkhardt, D.; Born, D.P.; Singh, N.B.; Oberhofer, K.; Carradori, S.; Sinistaj, S.; Lorenzetti, S. Key performance indicators and leg positioning for the kick-start in competitive swimmers. Sports Biomech. 2023, 22, 752–766. [Google Scholar] [CrossRef]
Variables | Dartfish | IQ LAB | Pearson Coefficient | Paired-Sample T-Test | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95% CI | Sig. (2-Tailed) | ||||||||||||||
M | SEM | SD | Mean | SEM | SD | M | SEM | SD | Lower | Upper | t | df | |||
FKA (°) | 132.24 | 0.62 | 2.22 | 132.23 | 0.61 | 2.21 | 0.998 ** | 0.01 | 0.03 | 0.13 | −0.07 | 0.08 | 0.22 | 12.00 | 0.83 |
FAA (°) | 126.91 | 0.96 | 3.48 | 126.92 | 0.95 | 3.41 | 0.999 ** | −0.02 | 0.04 | 0.13 | −0.09 | 0.06 | −0.43 | 12.00 | 0.67 |
RKA (°) | 84.16 | 0.45 | 1.64 | 84.12 | 0.45 | 1.61 | 0.998 ** | 0.05 | 0.03 | 0.11 | −0.02 | 0.11 | 1.48 | 12.00 | 0.17 |
RAA (°) | 100.08 | 0.62 | 2.24 | 100.10 | 0.63 | 2.28 | 0.999 ** | −0.02 | 0.03 | 0.12 | −0.09 | 0.05 | −0.71 | 12.00 | 0.49 |
HA (°) | 44.97 | 0.32 | 1.15 | 44.98 | 0.32 | 1.16 | 0.997 ** | −0.01 | 0.02 | 0.09 | −0.06 | 0.04 | −0.32 | 12.00 | 0.75 |
BT (s) | 0.79 | 0.01 | 0.01 | 0.79 | 0.01 | 0.01 | 0.997 ** | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.90 | 12.00 | 0.08 |
TA (°) | 39.53 | 0.28 | 1.00 | 39.52 | 0.28 | 1.1 | 0.997 ** | 0.01 | 0.02 | 0.08 | −0.04 | 0.05 | 0.37 | 12.00 | 0.72 |
EA (°) | 36.62 | 0.21 | 0.75 | 36.65 | 0.21 | 0.74 | 0.995 ** | −0.02 | 0.02 | 0.07 | −0.07 | 0.02 | −1.15 | 12.00 | 0.27 |
FT (s) | 0.40 | 0.01 | 0.01 | 0.40 | 0.01 | 0.01 | 0.997 ** | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | −0.81 | 12.00 | 0.44 |
FD (m) | 2.82 | 0.02 | 0.05 | 2.82 | 0.01 | 0.05 | 0.997 ** | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −1.48 | 12.00 | 0.17 |
GT (s) | 0.56 | 0.01 | 0.01 | 0.56 | 0.01 | 0.01 | 0.995 ** | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.27 | 12.00 | 0.79 |
GD (m) | 2.18 | 0.01 | 0.05 | 2.18 | 0.01 | 0.05 | 0.997 ** | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.48 | 12.00 | 0.17 |
T5 (s) | 1.75 | 0.01 | 0.01 | 1.75 | 0.01 | 0.01 | 0.997 ** | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.46 | 12.00 | 0.66 |
Variables | Intrarater | Interrater | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ranking 1 | Ranking 2 | Examiner A | Examiner B | |||||||||
M | SEM | SD | M | SEM | SD | M | SEM | SD | Mean | SEM | SD | |
FKA (°) | 132.58 | 0.54 | 1.94 | 132.48 | 0.54 | 1.95 | 132.58 | 0.54 | 1.94 | 132.54 | 0.50 | 1.82 |
FAA (°) | 126.96 | 0.86 | 3.12 | 126.88 | 0.87 | 3.12 | 126.96 | 0.86 | 3.12 | 127.17 | 0.82 | 2.96 |
RKA (°) | 84.35 | 0.44 | 1.60 | 84.32 | 0.44 | 1.60 | 84.35 | 0.44 | 1.60 | 84.43 | 0.46 | 1.66 |
RAA (°) | 100.58 | 0.66 | 2.38 | 100.60 | 0.67 | 2.41 | 100.58 | 0.66 | 2.38 | 100.70 | 0.70 | 2.51 |
HA (°) | 44.97 | 0.32 | 1.15 | 44.98 | 0.32 | 1.16 | 44.97 | 0.32 | 1.15 | 45.12 | 0.36 | 1.30 |
BT (s) | 0.79 | 0.01 | 0.01 | 0.79 | 0.01 | 0.01 | 0.79 | 0.01 | 0.01 | 0.79 | 0.01 | 0.01 |
TA (°) | 39.63 | 0.28 | 1.02 | 39.62 | 0.28 | 1.02 | 39.63 | 0.28 | 1.02 | 39.54 | 0.26 | 0.93 |
EA (°) | 36.92 | 0.19 | 0.67 | 36.92 | 0.19 | 0.67 | 36.92 | 0.19 | 0.67 | 36.87 | 0.19 | 0.70 |
FT (s) | 0.40 | 0.01 | 0.01 | 0.40 | 0.01 | 0.01 | 0.40 | 0.01 | 0.01 | 0.40 | 0.01 | 0.01 |
FD (m) | 2.84 | 0.01 | 0.05 | 2.83 | 0.01 | 0.05 | 2.84 | 0.01 | 0.05 | 2.84 | 0.01 | 0.05 |
GT (s) | 0.56 | 0.01 | 0.01 | 0.56 | 0.01 | 0.01 | 0.56 | 0.01 | 0.01 | 0.56 | 0.01 | 0.01 |
GD (m) | 2.16 | 0.01 | 0.05 | 2.17 | 0.01 | 0.05 | 2.16 | 0.01 | 0.05 | 2.16 | 0.01 | 0.05 |
T5 (s) | 1.75 | 0.01 | 0.01 | 1.75 | 0.01 | 0.01 | 1.75 | 0.01 | 0.01 | 1.74 | 0.01 | 0.02 |
Variables | Intrarater Reliability | Interrater Reliability | |||||||
---|---|---|---|---|---|---|---|---|---|
ICC | Raters | ICC | |||||||
IC | 95% CI | SEM | IC | 95% IC | SEM | ||||
Lower | Upper | Lower | Upper | ||||||
FKA (°) | 0.99 | 0.98 | 1.00 | 0.19 | A-B | 0.99 | 0.98 | 1.00 | 0.19 |
FAA (°) | 1.00 | 0.99 | 1.00 | 0.00 | A-B | 0.99 | 0.97 | 1.00 | 0.30 |
RKA (°) | 1.00 | 1.00 | 1.00 | 0.00 | A-B | 0.99 | 0.95 | 1.00 | 0.16 |
RAA (°) | 1.00 | 1.00 | 1.00 | 0.00 | A-B | 1.00 | 0.99 | 1.00 | 0.00 |
HA (°) | 1.00 | 1.00 | 1.00 | 0.00 | A-B | 0.97 | 0.90 | 0.99 | 0.21 |
BT (s) | 1.00 | 0.99 | 1.00 | 0.00 | A-B | 0.98 | 0.93 | 0.99 | 0.01 |
TA (°) | 1.00 | 1.00 | 1.00 | 0.00 | A-B | 0.99 | 0.97 | 1.00 | 0.01 |
EA (°) | 0.99 | 0.97 | 1.00 | 0.01 | A-B | 0.97 | 0.90 | 0.99 | 0.12 |
FT (s) | 1.00 | 1.00 | 1.00 | 0.00 | A-B | 0.97 | 0.89 | 0.99 | 0.01 |
FD (m) | 0.99 | 0.98 | 1.00 | 0.01 | A-B | 0.99 | 0.96 | 1.00 | 0.01 |
GT (s) | 1.00 | 1.00 | 1.00 | 0.00 | A-B | 0.94 | 0.80 | 0.98 | 0.01 |
GD (m) | 0.99 | 0.98 | 1.00 | 0.01 | A-B | 0.99 | 0.96 | 1.00 | 0.01 |
T5 (s) | 1.00 | 1.00 | 1.00 | 0.00 | A-B | 0.97 | 0.91 | 0.99 | 0.01 |
Variables | Test Session 1 | Test Session 2 | ICC | |||||||
---|---|---|---|---|---|---|---|---|---|---|
M | SEM | SD | M | SEM | SD | IC | 95% CI | SEM | ||
Lower | Upper | |||||||||
FKA (°) | 132.40 | 0.62 | 2.23 | 132.53 | 0.54 | 1.93 | 0.98 | 0.93 | 0.94 | 0.29 |
FAA (°) | 126.98 | 0.92 | 3.33 | 126.92 | 0.86 | 3.11 | 0.99 | 0.96 | 0.99 | 0.32 |
RKA (°) | 84.20 | 0.44 | 1.60 | 84.34 | 0.44 | 1.60 | 0.99 | 0.97 | 0.99 | 0.16 |
RAA (°) | 100.09 | 0.63 | 2.26 | 100.59 | 0.66 | 2.39 | 0.97 | 0.89 | 0.99 | 0.40 |
HA (°) | 44.94 | 0.33 | 1.18 | 44.83 | 0.32 | 1.17 | 0.98 | 0.94 | 0.99 | 0.17 |
BT (s) | 0.79 | 0.01 | 0.01 | 0.79 | 0.01 | 0.01 | 0.94 | 0.79 | 0.98 | 0.01 |
TA (°) | 39.55 | 0.28 | 1.00 | 39.63 | 0.28 | 1.02 | 0.97 | 0.90 | 0.99 | 0.25 |
EA (°) | 36.69 | 0.19 | 0.67 | 36.92 | 0.19 | 0.67 | 0.95 | 0.85 | 0.99 | 0.15 |
FT (s) | 0.40 | 0.01 | 0.01 | 0.40 | 0.01 | 0.01 | 0.90 | 0.67 | 0.97 | 0.01 |
FD (m) | 2.82 | 0.01 | 0.05 | 2.83 | 0.01 | 0.05 | 0.94 | 0.81 | 0.98 | 0.01 |
GT (s) | 0.55 | 0.01 | 0.02 | 0.56 | 0.01 | 0.01 | 0.93 | 0.76 | 0.98 | 0.01 |
GD (m) | 2.18 | 0.01 | 0.05 | 2.17 | 0.01 | 0.05 | 0.94 | 0.81 | 0.98 | 0.01 |
T5 (s) | 1.74 | 0.01 | 0.02 | 1.75 | 0.01 | 0.01 | 0.96 | 0.87 | 0.99 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matúš, I.; Vadašová, B.; Eliáš, T.; Rydzik, Ł.; Ambroży, T.; Czarny, W. Validity and Reliability of 2D Video Analysis for Swimming Kick Start Kinematics. J. Funct. Morphol. Kinesiol. 2025, 10, 184. https://doi.org/10.3390/jfmk10020184
Matúš I, Vadašová B, Eliáš T, Rydzik Ł, Ambroży T, Czarny W. Validity and Reliability of 2D Video Analysis for Swimming Kick Start Kinematics. Journal of Functional Morphology and Kinesiology. 2025; 10(2):184. https://doi.org/10.3390/jfmk10020184
Chicago/Turabian StyleMatúš, Ivan, Bibana Vadašová, Tomáš Eliáš, Łukasz Rydzik, Tadeusz Ambroży, and Wojciech Czarny. 2025. "Validity and Reliability of 2D Video Analysis for Swimming Kick Start Kinematics" Journal of Functional Morphology and Kinesiology 10, no. 2: 184. https://doi.org/10.3390/jfmk10020184
APA StyleMatúš, I., Vadašová, B., Eliáš, T., Rydzik, Ł., Ambroży, T., & Czarny, W. (2025). Validity and Reliability of 2D Video Analysis for Swimming Kick Start Kinematics. Journal of Functional Morphology and Kinesiology, 10(2), 184. https://doi.org/10.3390/jfmk10020184