Insights of Sea Buckthorn Extract’s Encapsulation by Coacervation Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Extraction of the Biologically Active Compounds from Sea Buckthorn
2.4. Phytochemical Profile of the Sea Buckthorn Extracts
2.4.1. Total Carotenoid Content
2.4.2. Total Polyphenol Content (TPC)
2.4.3. Total Flavonoid Content (TFC)
2.4.4. Antioxidant Activity
2.4.5. Chromatographic Analysis of the Carotenoids
2.5. Microencapsulation of the Bioactive Compounds from Sea Buckthorn and Powder Characterization
2.5.1. Encapsulation Efficiency and Powder Characterization
2.5.2. Colorimetric Analysis
2.5.3. Confocal Laser Scanning Microscopy (CLSM)
2.5.4. In Vitro Digestion
2.6. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of the Phytochemical Profile of the Sea Buckthorn Extracts
3.2. Evaluation of the Phytochemical Profile of the Powders
3.3. Colorimetric Analysis of the Powders and Its Stability
3.4. The Confocal Laser Scanning Microscopy (CLSM)
3.5. In Vitro Digestion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt |
AlCl3 | aluminum chloride |
CE | Catechin Equivalents |
CLSM | Confocal Laser Scanning Microscopy |
CMC | Carboxymethil cellulose |
DPPH | 2,2-diphenyl1-picrylhydrazyl |
dw | dry weight |
fr | fresh weight |
GAE | Gallic Acid Equivalents |
HCl | hydrochloric acid |
HPLC | High Performance Liquid Chromatography |
LC | Lycopene Content |
Na2CO3 | sodium carbonate |
NaCl | sodiul chloride |
NaNO2 | sodium nitrite |
NaOH | sodium hydroxide |
nd | not detected |
P | Powder |
rpm | rotations per minute |
SGF | Simulated Gastric Fluid |
SIF | Simulated Intestinal Fluid |
TC | Total Carotenoid Content |
TFC | Total Flavonoid Content |
TPC | Total Polyphenol Content |
UAE | Ultrasounds Assisted Extraction |
E | Extract |
WPI | Whey Protein Isolate |
βC | Beta carotene Content |
References
- Olas, B. Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food Chem. Toxicol. 2016, 97, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Shutterstock. Available online: https://www.shutterstock.com/ro/image-photo/sea-buckthorn-fresh-ripe-berries-leaves-604664045 (accessed on 13 September 2021).
- de Freitas Santos, P.D.; Rubio, F.T.V.; da Silva, M.P.; Pinho, L.S.; Favaro-Trindade, C.S. Microencapsulation of carotenoid-rich materials: A review. Food Res. Int. 2021, 147, 110571. [Google Scholar] [CrossRef] [PubMed]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, K.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, L.; Panovská, Z.; et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Kaur, M.; Dhillon, R.S.; Tappia, P.S.; Dhalla, N.S. Health benefits of sea buckthorn for the prevention of cardiovascular diseases. J. Funct. Foods 2011, 3, 2–12. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef]
- Celli, G.B.; Ghanem, A.; Brooks, M.S.L. Bioactive Encapsulated Powders for Functional Foods—A Review of Methods and Current Limitations. Food Bioproc. Tech. 2015, 8, 1825–1837. [Google Scholar] [CrossRef]
- Taneja, A.; Harjinder, S. Challenges for the delivery of long-chain n-3 fatty acids in functional foods. Annu. Rev. Food Sci. Technol. 2012, 3, 105–123. [Google Scholar] [CrossRef]
- de Souza Simões, L.; Madalena, D.A.; Pinheiro, A.C.; Teixeira, J.A.; Vicente, A.A.; Ramos, O.L. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv. Colloid Interface Sci. 2017, 243, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Turgeon, S.L.; Schmitt, C.; Sanchez, C. Protein-polysaccharide complexes and coacervates. Curr. Opin. Colloid Interface Sci. 2007, 12, 63–70. [Google Scholar] [CrossRef]
- Ye, Q.; Georges, N.; Selomulya, C. Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends Food Sci. Technol. 2018, 78, 167–179. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B.; Kimura, M. HarvestPlus Handbook for Carotenoid Analysis; HarvestPlus: Washington, DC, USA, 2004; pp. 8–19. [Google Scholar]
- Turturică, M.; Râpeanu, G.; Stănciuc, N.; Bahrim, G. Fluorescence spectroscopy investigation on pH and heat changes of cherries anthocyanin extracts. J. Biotechnol. 2015, 208, S68. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Mihalcea, L.; Turturica, M.; Barbu, V.; Ionita, E.; Patrascu, L.; Cotarlet, M.; Dumitrascu, L.; Aprodu, I.; Rapeanu, G.; Stanciuc, N. Transglutaminase mediated microencapsulation of sea buckthorn supercritical CO2 extract in whey protein isolate and valorization in highly value added food products. Food Chem. 2018, 262, 30–38. [Google Scholar] [CrossRef]
- Oancea, A.M.; Hasan, M.; Vasile, A.M.; Barbu, V.; Enachi, E.; Bahrim, G.; Rapeanu, G.; Silvi, S.; Stanciuc, N. Functional evaluation of microencapsulated anthocyanins from sour cherries skins extract in whey proteins isolate. LWT 2018, 95, 129–134. [Google Scholar] [CrossRef]
- Ursache, F.M.; Ghinea, I.O.; Turturica, M.; Aprodu, I.; Rapeanu, G.; Stanciuc, N. Phytochemicals content and antioxidant properties of sea buckthorn (Hippophae rhamnoides L.) as affected by heat treatment–Quantitative spectroscopic and kinetic approaches. Food Chem. 2017, 233, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Korekar, G.; Dolkar, P.; Singh, H.; Srivastava, R.B.; Stobdan, T. Variability and the genotypic effect on antioxidant activity, total phenolics, carotenoids and ascorbic acid content in seventeen natural population of Seabuckthorn (Hippophae rhamnoides L.) from trans-Himalaya. LWT 2014, 55, 157–162. [Google Scholar] [CrossRef]
- Zhang, R.; Belwal, T.; Li, L.; Lin, X.; Xu, Y.; Luo, Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydr. Polym. 2020, 242, 219495666. [Google Scholar] [CrossRef] [PubMed]
- Laos, K.; Lõugas, T.; Mändmets, A.; Vokk, R. Encapsulation of β-carotene from sea buckthorn (Hippophaë rhamnoides L.) juice in furcellaran beads. Innov. Food Sci. Emerg. Technol. 2007, 3, 395–398. [Google Scholar] [CrossRef]
- Neagu, C.; Mihalcea, L.; Enachi, E.; Barbu, V.; Borda, D.; Bahrim, G.E.; Stanciunc, N. Cross-linked microencapsulation of CO2 supercritical extracted oleoresins from sea buckthorn: Evidence of targeted functionality and stability. Molecules 2020, 10, 2442. [Google Scholar] [CrossRef] [PubMed]
- Topală, C.M.; Mazilu, I.C.; Vulpe, M.; Vîjan, L.E. Quality study of fruits and extracts from six romanian sea buckthorn varieties. Curr. Trends Nat. Sci. 2020, 9, 273–283. [Google Scholar] [CrossRef]
- Katoh, T.; Nagashima, U.; Mimuro, M. Fluorescence properties of the allenic carotenoid fucoxanthin: Implication for energy transfer in photosynthetic pigment systems. Photosyn. Res. 1991, 27, 221–226. [Google Scholar] [CrossRef]
- Marinova, D.; Ribarova, F. HPLC determination of carotenoids in Bulgarian berries. J. Food Compost. Anal. 2007, 20, 370–374. [Google Scholar] [CrossRef]
- Llansola-Portoles, M.J.; Redeckas, K.; Streckaité, S.; Ilioaia, C.; Pascal, A.A.; Telfer, A.; Vengris, M.; Valkunasde, L.; Robert, B. Lycopene crystalloids exhibit singlet exciton fission in tomatoes. Phys. Chem. Chem. Phys. 2018, 20, 8640–8646. [Google Scholar] [CrossRef]
- Salgado, L.T.; Tomazetto, R.; Cinelli, L.P.; Farina, M.; Amado Filho, G.M. The influence of brown algae alginates on phenolic compounds capability of ultraviolet radiation absorption in vitro. Braz. J. Oceanogr. 2007, 55, 145–154. [Google Scholar] [CrossRef]
- McDonald, J.E.; Rooks, D.J.; McCarthy, A.J. Chapter nineteen-Methods for the Isolation of Cellulose-Degrading Microorganisms. In Methods in Enzymology; Gilbert, H.J., Ed.; Academic Press: London, UK, 2012; Volume 510, pp. 349–374. [Google Scholar] [CrossRef]
Components | Fruits | Pulp Oil | Leaves |
---|---|---|---|
Vitamin C (g/kg fw) | 0.2–30 | - | - |
Total Flavonoids (g/kg fw) | 1.6–10.0 | - | - |
Quercetin (mg/kg dw) | 40.0–375.0 | - | 332–1381 |
Kaempherol (mg/kg dw) | 102.0 | - | 2.8–4.1 |
Isorhamnetin (mg/kg dw) | 103.0–964.0 | - | 270.0 |
Gallic acid (mg/kg dw) | 1.0–15.9 | - | 19.7–79.1 |
p-coumaric acid (mg/kg dw) | 1.4–22.3 | - | 8.4–13.4 |
Salicylic acid (mg/kg dw) | 21.0–47.5 | - | - |
Total carotenoids (mg/kg fw) | 15.0–185.0 | 303–21,400 | 35.0–42.0 |
Lycopene (% from total carotenoids) | 1.4–4.3 | nd | nd |
Β-carotene (% from total carotenoids) | 4.6–26.0 | 5.5 | 29.0–48.0 |
Linolenic acid (% fatty acids) | - | 0.4–10.0 | - |
Linoleic acid (% fatty acids) | - | 4.4–15.0 | - |
Oleic acid (% fatty acids) | - | 10.0–26.2 | - |
Phytochemical Content/Extracts | E1 | E2 |
---|---|---|
Lycopene content (mg LC/g dw) | 1.69 ± 0.01 a | 0.87 ± 0.01 b |
β-carotene content (mg βC/g dw) | 2.79 ± 0.02 a | 1.38 ± 0.02 b |
Total carotenoid content (mg TC/g dw) | 3.30 ± 0.03 a | 1.60 ± 0.01 b |
Total flavonoid content (mg CE/g dw) | 310.06 ± 6.01 a | 127.80 ± 2.41 b |
Total polyphenol content (mg GAE/g dw) | 1023.50 ± 5.51 a | 368.12 ± 5.37 b |
ABTS antioxidant activity (% inhibition) | 4.36 ± 0.01 a | 3.81 ± 0.02 b |
DPPH antioxidant activity (% inhibition) | 92.00 ± 0.42 a | 61.01 ± 0.42 b |
Phytochemical Content/Powders | P1 | P2 |
---|---|---|
Encapsulation efficiency (%) | 52.20 ± 1.60 a | 87.23 ± 0.05 b |
Lycopene content (mg LC/g dw) | 1.22 ± 0.01 a | 0.86 ± 0.02 b |
β-carotene content (mg βC/g dw) | 0.63 ± 0.03 a | 0.98 ± 0.05 b |
Total carotenoid content (mg TC/g dw) | 2.13 ± 0.03 a | 1.14 ± 0.04 b |
Total flavonoid content (mg CE/g dw) | 219.86 ± 5.71 a | 154.68 ± 10.36 b |
Total polyphenol content (mg GAE/g dw) | 529.84 ± 10.54 a | 319.14 ± 7.37 b |
ABTS antioxidant activity (% inhibition) | 6.67 ± 0.38 a | 7.09 ± 0.01 b |
DPPH antioxidant activity (% inhibition) | 93.05 ± 0.77 a | 74.90 ± 0.99 b |
Powders | Initial Encapsulation Efficiency, (%) | Encapsulation Efficiency after 180 Days, (%) | Encapsulation Efficiency after 270 Days, (%) |
---|---|---|---|
P1 | 52.20 ± 1.60 a | 49.20 ± 0.02 b | 48.88 ± 0.01 b |
P2 | 87.23 ± 0.05 a | 80.45 ± 0.03 b | 76.43 ± 0.01 c |
Storage Period, Days | P1 Colorimetric Parameters | P2 Colorimetric Parameters | ||||
---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |
0 | 80.90 ± 2.11 a | 7.26 ± 0.011 a | 32.39 ± 1.50 a | 86.37 ± 0.12 a | 7.67 ± 0.21 a | 38.33 ± 1.91 a |
180 | 89.41 ± 5.25 b | 8.18 ± 0.21 b | 30.20 ± 0.49 b | 90.80 ± 3.41 b | 9.11 ± 0.34 b | 36.70 ± 0.44 b |
270 | 109.61 ± 6.20 c | 8.21 ± 0.57 b | 29.13 ± 2.11 c | 95.21 ± 1.21 c | 10.62 ± 1.60 c | 29.60 ± 0.73 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, D.; Condurache, N.N.; Aprodu, I.; Enachi, E.; Barbu, V.; Bahrim, G.E.; Stănciuc, N.; Râpeanu, G. Insights of Sea Buckthorn Extract’s Encapsulation by Coacervation Technique. Inventions 2021, 6, 59. https://doi.org/10.3390/inventions6030059
Roman D, Condurache NN, Aprodu I, Enachi E, Barbu V, Bahrim GE, Stănciuc N, Râpeanu G. Insights of Sea Buckthorn Extract’s Encapsulation by Coacervation Technique. Inventions. 2021; 6(3):59. https://doi.org/10.3390/inventions6030059
Chicago/Turabian StyleRoman, Diana, Nina Nicoleta Condurache (Lazăr), Iuliana Aprodu, Elena Enachi, Vasilica Barbu, Gabriela Elena Bahrim, Nicoleta Stănciuc, and Gabriela Râpeanu. 2021. "Insights of Sea Buckthorn Extract’s Encapsulation by Coacervation Technique" Inventions 6, no. 3: 59. https://doi.org/10.3390/inventions6030059
APA StyleRoman, D., Condurache, N. N., Aprodu, I., Enachi, E., Barbu, V., Bahrim, G. E., Stănciuc, N., & Râpeanu, G. (2021). Insights of Sea Buckthorn Extract’s Encapsulation by Coacervation Technique. Inventions, 6(3), 59. https://doi.org/10.3390/inventions6030059