Prediction of Major Adverse Cardiovascular Events in Atrial Fibrillation: A Comparison Between Machine Learning Techniques and CHA2DS2-VASc Score
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Variables
- Sociodemographic: Age, sex, primary care team, and region.
- Cardiovascular risk factors and diagnoses: Using specific ICD-10 codes for hypertension (I10–I15), hypercholesterolemia (E78), body mass index (BMI), diabetes mellitus (E10–14), sleep apnea–hypopnea syndrome (G47), heart failure (I50–I51), ischemic heart disease (including myocardial infarction, percutaneous coronary intervention, stable or unstable angina, and coronary artery bypass grafting) (I20–I25), chronic kidney disease (CKD) (N18) and estimated glomerular filtration rate (eGFR, mL/min/1.73 m2), cerebrovascular disease (transient ischemic attack or ischemic stroke) (G25, I63), chronic obstructive pulmonary disease (COPD) (J40–J45), cognitive impairment (F06, G31), and cancer (C00–C96).
- Clinical scores: Stroke risk based on the CHA2DS2-VASc score, Barthel index for activities of daily living (ADL), Wells score for assessing the likelihood of deep vein thrombosis, and nutritional status control (CONUT) score.
- Pharmacological treatment: Antiplatelet agents, new anticoagulants, and vitamin K antagonists.
- Final status: Mortality status (deceased/alive).
2.3. Statistical Analysis
2.4. Model Development
2.5. Performance Evaluation
2.6. Comparison of Predictive Capability
2.7. Model Interpretability
3. Results
3.1. Baseline Characteristics
3.2. Metrics Obtained
3.3. DeLong Test
4. Discussion
Clinical Applications and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Sanchis-Gomar, F.; Cervellin, G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int. J. Stroke 2021, 16, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Soliman, E.Z.; Safford, M.M.; Muntner, P.; Khodneva, Y.; Dawood, F.Z.; Zakai, N.A.; Thacker, E.L.; Judd, S.; Howard, V.J.; Howard, G.; et al. Atrial fibrillation and the risk of myocardial infarction. JAMA Intern. Med. 2014, 174, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Menichelli, D.; Lip, G.Y.H.; Sciacqua, A.; Violi, F.; Pignatelli, P. Family History of Atrial Fibrillation and Risk of Cardiovascular Events: A Multicenter Prospective Cohort Study. Circ. Arrhythm. Electrophysiol. 2020, 13, e008477. [Google Scholar] [CrossRef] [PubMed]
- Clua-Espuny, J.-L.; Molto-Balado, P.; Lucas-Noll, J.; Panisello-Tafalla, A.; Muria-Subirats, E.; Clua-Queralt, J.; Queralt-Tomas, L.; Reverté-Villarroya, S.; Investigators EBRICTUS Research. Early Diagnosis of Atrial Fibrillation and Stroke Incidence in Primary Care: Translating Measurements into Actions—A Retrospective Cohort Study. Biomedicines 2023, 11, 1116. [Google Scholar] [CrossRef] [PubMed]
- Emdin, C.A.; Wong, C.X.; Hsiao, A.J.; Altman, D.G.; Peters, S.A.; Woodward, M.; Odutayo, A.A. Atrial fibrillation as risk factor for cardiovascular disease and death in women compared with men: Systematic review and meta-analysis of cohort studies. BMJ 2016, 532, h7013. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Chu, Y. Atrial fibrillation as a prognostic indicator of myocardial infarction and cardiovascular death: A systematic review and metaanalysis. Sci. Rep. 2017, 7, 3360. [Google Scholar] [CrossRef] [PubMed]
- Bosco, E.; Hsueh, L.; McConeghy, K.W.; Gravenstein, S.; Saade, E. Major adverse cardiovascular event definitions used in observational analysis of administrative databases: A systematic review. BMC Med. Res. Methodol. 2021, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Moltó-Balado, P.; Reverté-Villarroya, S.; Monclús-Arasa, C.; Balado-Albiol, M.T.; Baset-Martínez, S.; Carot-Domenech, J.; Clua-Espuny, J.L. Heart Failure and Major Adverse Cardiovascular Events in Atrial Fibrillation Patients: A Retrospective Primary Care Cohort Study. Biomedicines 2023, 11, 1825. [Google Scholar] [CrossRef] [PubMed]
- Muria-Subirats, E.; Clua-Espuny, J.L.; Ballesta-Ors, J.; Lorman-Carbó, B.; Lechuga-Durán, I.; Fernández-Sáez JPla-Farnós, R. Incidence and Risk Assessment for Atrial Fibrillation at 5 Years: Hypertensive Diabetic Retrospective Cohort. Int. J. Environ. Res. 2020, 17, 3491. [Google Scholar] [CrossRef] [PubMed]
- Zungsontiporn, N.; Link, M.S. Newer technologies for detection of atrial fibrillation. BMJ 2018, 363, k3946. [Google Scholar] [CrossRef] [PubMed]
- Svennberg, E.; Tjong, F.; Goette, A.; Akoum, N.; Di Biase, L.; Bordachar, P.; Boriani, G.; Burri, H.; Conte, G.; Deharo, J.C.; et al. How to use digital devices to detect and manage arrhythmias: An EHRA practical guide. Europace 2022, 3, euac038. [Google Scholar] [CrossRef] [PubMed]
- Lubitz, S.A.; Faranesh, A.Z.; Selvaggi, C.; Atlas, S.J.; McManus, D.D.; Singer, D.E.; Pagoto, S.; McConnell, M.V.; Pantelopoulos, A.; Foulkes, A.S. Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The Fitbit Heart Study. Circulation 2022, 146, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Turakhia, M.P.; Desai, M.; Hedlin, H.; Rajmane, A.; Talati, N.; Ferris, T.; Desai, S.; Nag, D.; Patel, M.; Kowey, P.; et al. Rationale and design of a large-scale, appbased study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. Am. Heart J. 2019, 207, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Dritsas, E.; Trigka, M. Stroke Risk Prediction with Machine Learning Techniques. Sensors 2022, 22, 4670. [Google Scholar] [CrossRef] [PubMed]
- Wegner, F.K.; Plagwitz, L.; Doldi, F.; Ellermann, C.; Willy, K.; Wolfes, J.; Sandmann, S.; Varghese, J.; Eckardt, L. Machine learning in the detection and management of atrial fibrillation. Clin. Res. Cardiol. 2022, 111, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Miao, B.; Hernández, A.V.; Roman, Y.M.; Alberts, M.J.; Coleman, C.I.; Baker, W.L. Four-year incidence of major adverse cardiovascular events in patients with atherosclerosis and atrial fibrillation. Clin. Cardiol. 2020, 43, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Harb, S.C.; Wang, T.K.M.; Nemer, D.; Wu, Y.; Cho, L.; Menon, V.; Wazni, O.; Cremer, P.C.; Jaber, W. CHA2DS2-VASc score stratifies mortality risk in patients with and without atrial fibrillation. Open Heart 2021, 8, e001794. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, R.B., Sr.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.C.; Go, A.S.; Chang, Y.; Borowsky, L.H.; Pomernacki, N.K.; Udaltsova, N.; Singer, D.E. A new risk scheme to predict warfarin-associated hemorrhage: The ATRIA (Anticoagulation and Risk Factors in Atrial Fibrillation) Study. J. Am. Coll. Cardiol. 2011, 58, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Lip, G.Y.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J.G.M. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The euro heart survey on atrial fibrillation. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Palà, E.; Bustamante, A.; Clúa-Espuny, J.L.; Acosta, J.; González-Loyola, F.; Santos, S.D.; Ribas-Segui, D.; Ballesta-Ors, J.; Penalba, A.; Giralt, M.; et al. Blood-biomarkers and devices for atrial fibrillation screening: Lessons learned from the AFRICAT (Atrial Fibrillation Research In CATalonia) study. PLoS ONE 2022, 17, e0273571. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.; Andrade, J.; Laksman, Z. Thromboembolic risk stratification in atrial fibrillation beyond clinical risk scores. Rev. Cardiovasc. Med. 2021, 22, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Sánchez de la Nava, A.M.; Atienza, F.; Bermejo, J.; Fernández-Avilés, F. Artificial intelligence for a personalized diagnosis and treatment of atrial fibrillation. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H1337–H1347. [Google Scholar] [CrossRef] [PubMed]
- Wesselius, F.J.; van Schie, M.S.; De Groot, N.M.S.; Hendriks, R.C. Digital biomarkers and algorithms for detection of atrial fibrillation using surface electrocardiograms: A systematic review. Comput. Biol. Med. 2021, 133, 104404. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.R.; Ayoubkhani, D.; McEwan, P.; Sugrue, D.M.; Farooqui, U.; Lister, S.; Lumley, M.; Bakhai, A.; Cohen, A.T.; O’Neill, M.; et al. Predicting atrial fibrillation in primary care using machine learning. PLoS ONE 2019, 14, e0224582. [Google Scholar] [CrossRef] [PubMed]
- Black, J.E.; Kueper, J.K.; Williamson, T.S. An introduction to machine learning for classification and prediction. Fam. Pract. 2023, 40, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Ueda, A.; Kasagi, S.; Maeno, K.I.; Naito, R.; Kumagai, T.; Kimura, Y.; Kato, M.; Kawana, F.; Tomita, Y.; Narui, K.; et al. Cross-Sectional Relationship Between Atrial Conduction Delay and Arterial Stiffness in Patients with Obstructive Sleep Apnea. Vasc. Health Risk Manag. 2023, 19, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.B.; Teeple, S.; Navathe, A.S. Addressing Bias in Artificial Intelligence in Health Care. JAMA 2019, 322, 2377–2378. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Harding, D.; Slabaugh, G.; Marouli, E.; Deloukas, P. Prediction of atrial fibrillation and stroke using machine learning models in UK Biobank. Heliyon 2024, 10, e28034. [Google Scholar] [CrossRef] [PubMed]
- Moltó-Balado, P.; Reverté-Villarroya, S.; Alonso-Barberán, V.; Monclús-Arasa, C.; Balado-Albiol, M.T.; Clua-Queralt, J.; Clua-Espuny, J.-L. Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation. Technologies 2024, 12, 13. [Google Scholar] [CrossRef]
- Mo, R.; Yang, Y.; Zhang, H.; Suo, N.; Wang, J.; Lyu, S. Clinical Application of CHA2DS2-VASc versus GRACE Scores for Assessing the Risk of Long-term Ischemic Events in Atrial Fibrillation and Acute Coronary Syndrome or PCI. Rev. Cardiovasc. Med. 2022, 23, 168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ye, S.; Qian, M.; Zhao, B.; Buchsbaum, R.; Sacco, R.L.; Levin, B.; Di Tullio, M.R.; Mann, D.L.; Pullicino, P.M.; Freudenberger, R.S.; et al. CHA2 DS2 -VASc score and adverse outcomes in patients with heart failure with reduced ejection fraction and sinus rhythm. Eur. J. Heart Fail. 2016, 18, 1261–1266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benjamin, E.J.; Thomas, K.L.; Go, A.S.; Desvigne-Nickens, P.; Albert, C.M.; Alonso, A.; Chamberlain, A.M.; Essien, U.R.; Hernandez, I.; Hills, M.T.; et al. Transforming Atrial Fibrillation Research to Integrate Social Determinants of Health: A National Heart, Lung, and Blood Institute Workshop Report. JAMA Cardiol. 2023, 8, 182–191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nishi, H.; Oishi, N.; Ogawa, H.; Natsue, K.; Doi, K.; Kawakami, O.; Aoki, T.; Fukuda, S.; Akao, M.; Tsukahara, T.; et al. Predicting cerebral infarction in patients with atrial fibrillation using machine learning: The Fushimi AF registry. J. Cereb. Blood Flow Metab. 2022, 42, 746–756. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Joddrell, M.; El-Bouri, W.; Harrison, S.L.; Huisman, M.V.; Lip, G.Y.H.; Zheng, Y.; GLORIA-AFinvestigators. Machine learning for outcome prediction in patients with non-valvular atrial fibrillation from the GLORIA-AF registry. Sci. Rep. 2024, 14, 27088. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bernardini, A.; Bindini, L.; Antonucci, E.; Berteotti, M.; Giusti, B.; Testa, S.; Palareti, G.; Poli, D.; Frasconi, P.; Marcucci, R. Machine learning approach for prediction of outcomes in anticoagulated patients with atrial fibrillation. Int. J. Cardiol. 2024, 407, 132088, Erratum in: Int. J. Cardiol. 2024, 410, 132226. [Google Scholar] [CrossRef] [PubMed]
- Haq, I.U.; Chhatwal, K.; Sanaka, K.; Xu, B. Artificial Intelligence in Cardiovascular Medicine: Current Insights and Future Prospects. Vasc. Health Risk Manag. 2022, 18, 517–528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variables | No MACE | (%) | MACE | (%) | p |
---|---|---|---|---|---|
All (n%) | 826 | 32.09% | 1748 | 67.91% | |
Women | 425 | 51.41% | 918 | 53.30% | 0.356 |
Age average | 80.53 ± 8.05 | 82.23 ± 7.59 | <0.001 | ||
Hypertension arterial | 602 | 72.82% | 1343 | 76.83% | <0.001 |
Diabetes mellitus | 220 | 26.59% | 549 | 30.77% | <0.001 |
Dyslipidemia | 324 | 39.22% | 874 | 50.05% | 0.020 |
Vascular peripheral disease | 32 | 3.87% | 286 | 16.36% | <0.001 |
Dementia/cognitive impairment | 83 | 10.05% | 227 | 12.99% | <0.001 |
Chronic kidney disease | 183 | 22.20% | 493 | 28.2% | <0.001 |
Cancer | 279 | 33.79% | 577 | 33.01% | 0.496 |
Thyroid disease | 59 | 7.14% | 156 | 8.92% | 0.018 |
OSAHS 1 | 32 | 3.93% | 94 | 5.37% | 0.007 |
COPD 2 | 122 | 14.73% | 325 | 18.59% | <0.001 |
BMI 3 (kg/m2) | 29.32 ± 5.28 | 29.75 ± 5.51 | 0.041 | ||
Cholesterol | 184.23 ± 38.07 | 164.98 ± 38.14 | <0.001 | ||
Glomerular filtration rate (mL/min/1.73 m2) | 66.11 ± 19.8 | 59.85 ± 20.74 | <0.001 | ||
VKA 4 | 332 | 40.14% | 613 | 35.06% | <0.001 |
NOAC 5 | 322 | 38.96% | 731 | 41.82% | 0.015 |
Antiaggregants | 67 | 8.11% | 74 | 4.23% | 0.003 |
Pfeiffer score | 2.91 ± 3.1 | 2.61 ± 2.8 | 0.218 | ||
CHA2DS2-VASc score | 3.26 ± 0.95 | 4.62 ± 1.02 | <0.001 | ||
CHARLSON score | 1.24 ± 1.19 | 2.67 ± 1.31 | <0.001 | ||
CONUT score | 1.31 ± 0.54 | 2.48 ± 0.61 | <0.001 | ||
Wells score | 1.35 ± 0.48 | 1.33 ± 0.47 | 0.415 | ||
COVID-19 | 81 | 9.82% | 179 | 10.24% | 0.573 |
Accuracy | Precision | Recall | F1 Score | Sensitivity | Specificity | AUC | |
---|---|---|---|---|---|---|---|
CHA2DS2-VASc | 85.23% | 0.8032 | 0.7719 | 0.7589 | 0.8743 | 0.8054 | 81.71 |
AdaBoost model | 99.99% | 0.9994 | 1 | 0.9997 | 1 | 0.9994 | 99.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moltó-Balado, P.; Clua-Espuny, J.-L.; Reverté-Villarroya, S.; Alonso-Barberán, V.; Balado-Albiol, M.T.; Simeó-Monzó, A.; Canela-Royo, J.; del Barrio-González, A. Prediction of Major Adverse Cardiovascular Events in Atrial Fibrillation: A Comparison Between Machine Learning Techniques and CHA2DS2-VASc Score. Inventions 2025, 10, 60. https://doi.org/10.3390/inventions10040060
Moltó-Balado P, Clua-Espuny J-L, Reverté-Villarroya S, Alonso-Barberán V, Balado-Albiol MT, Simeó-Monzó A, Canela-Royo J, del Barrio-González A. Prediction of Major Adverse Cardiovascular Events in Atrial Fibrillation: A Comparison Between Machine Learning Techniques and CHA2DS2-VASc Score. Inventions. 2025; 10(4):60. https://doi.org/10.3390/inventions10040060
Chicago/Turabian StyleMoltó-Balado, Pedro, Josep-Lluis Clua-Espuny, Silvia Reverté-Villarroya, Victor Alonso-Barberán, Maria Teresa Balado-Albiol, Andrea Simeó-Monzó, Jorge Canela-Royo, and Alba del Barrio-González. 2025. "Prediction of Major Adverse Cardiovascular Events in Atrial Fibrillation: A Comparison Between Machine Learning Techniques and CHA2DS2-VASc Score" Inventions 10, no. 4: 60. https://doi.org/10.3390/inventions10040060
APA StyleMoltó-Balado, P., Clua-Espuny, J.-L., Reverté-Villarroya, S., Alonso-Barberán, V., Balado-Albiol, M. T., Simeó-Monzó, A., Canela-Royo, J., & del Barrio-González, A. (2025). Prediction of Major Adverse Cardiovascular Events in Atrial Fibrillation: A Comparison Between Machine Learning Techniques and CHA2DS2-VASc Score. Inventions, 10(4), 60. https://doi.org/10.3390/inventions10040060