## 1. Introduction

## 2. Zero-Temperature Equation of State of a Two-Dimensional Bosonic Quantum Fluid

#### 2.1. Superfluid Parametrization of the Bosonic Field

#### 2.2. Zero-Temperature Equation of State

#### 2.3. Explicit Implementation for Finite-Range Interaction

## 3. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A

## References

- Landau, L.D. Theory of the Superfluidity of Helium II. Phys. Rev.
**1941**, 60, 356–358. [Google Scholar] [CrossRef] - Kapitza, P. Viscosity of Liquid Helium below the λ-Point. Nature
**1938**, 141, 74. [Google Scholar] [CrossRef] - Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science
**1995**, 269, 198–201. [Google Scholar] [CrossRef] [PubMed][Green Version] - Davis, K.B.; Mewes, M.-O.; Andrews, M.R.; van Druten, N.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett.
**1995**, 75, 3969–3973. [Google Scholar] [CrossRef] [PubMed][Green Version] - Bradley, C.C.; Sackett, C.A.; Tollett, J.J.; Hulet, R.G. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. Phys. Rev. Lett.
**1995**, 75, 1687–1690. [Google Scholar] [CrossRef] [PubMed][Green Version] - Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys.
**1999**, 71, 463–512. [Google Scholar] [CrossRef][Green Version] - Mermin, N.D.; Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett.
**1966**, 17, 1133–1136. [Google Scholar] [CrossRef] - Hohenberg, P.C. Existence of long-range order in one and two dimensions. Phys. Rev.
**1967**, 158, 383–386. [Google Scholar] [CrossRef] - Schick, M. Two-dimensional system of hard-core bosons. Phys. Rev. A
**1971**, 3, 1067–1073. [Google Scholar] [CrossRef] - Popov, V.N. On the theory of the superfluidity of two- and one-dimensional bose systems. Theor. Math. Phys.
**1972**, 11, 565–573. [Google Scholar] [CrossRef] - Pastukhov, V. Ground-State Properties of a Dilute Two-Dimensional Bose Gas. J. Low Temp. Phys.
**2018**, 1–12. [Google Scholar] [CrossRef] - Salasnich, L. Nonuniversal Equation of State of the Two-Dimensional Bose Gas. Phys. Rev. Lett.
**2017**, 118, 130402. [Google Scholar] [CrossRef] [PubMed] - Beane, S.R. Effective-range corrections to the ground-state energy of the weakly-interacting Bose gas in two dimensions. Eur. Phys. J. D
**2018**, 72, 55. [Google Scholar] [CrossRef][Green Version] - Braaten, E.; Hammer, H.-W.; Hermans, S. Nonuniversal effects in the homogeneous Bose gas. Phys. Rev. A
**2001**, 63, 063609. [Google Scholar] [CrossRef] - Cappellaro, A.; Salasnich, L. Thermal field theory of bosonic gases with finite-range effective interaction. Phys. Rev. A
**2017**, 95, 033627. [Google Scholar] [CrossRef] - Cappellaro, A.; Salasnich, L. Finite-range corrections to the thermodynamics of the one-dimensional Bose gas. Phys. Rev. A
**2017**, 96, 063610. [Google Scholar] [CrossRef] - Nagaosa, N. Quantum Field Theory in Condensed Matter Physics; Springer: Berlin, Germany, 1999. [Google Scholar]
- Leggett, A.J. Quantum Liquids; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Salasnich, L. Hydrodynamics of Bose and Fermi superfluids at zero temperature: The superfluid nonlinear Schrödinger equation. Laser Phys.
**2009**, 19, 642–646. [Google Scholar] [CrossRef] - Berezinskii, V.L. Destruction of long-range order in one-dimensional and two-dimensional system possessing a continous symmetry group—II. Quantum systems. Sov. Phys.-JETP
**1971**, 34, 1144–1156. [Google Scholar] - Kosterlitz, L.M.; Thouless, D.J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C
**1973**, 6, 1181–1203. [Google Scholar] [CrossRef][Green Version] - Coste, C. Nonlinear Schrödinger equation and superfluid hydrodynamics. Eur. Phys. J. B
**1998**, 1, 245–253. [Google Scholar] [CrossRef] - Altland, A.; Simons, B.D. Condensed Matter Field Theory; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Bogoliubov, N.N. On the theory of superfluidity. J. Phys.
**1947**, 11, 23. [Google Scholar] - Salasnich, L.; Toigo, F. Zero-point energy of ultracold atoms. Phys. Rep.
**2016**, 640, 1–29. [Google Scholar] [CrossRef][Green Version] - Tononi, A.; Cappellaro, A.; Salasnich, L. Condensation and superfluidity of dilute Bose gases with finite-range interaction. New J. Phys.
**2018**, 20, 125007. [Google Scholar] [CrossRef] - Astrakharchik, G.E.; Boronat, J.; Casulleras, J.; Kurbakov, I.L.; Lozovik, Yu.E. Equation of state of a weakly interacting two-dimensional Bose gas studied at zero temperature by means of quantum Monte Carlo methods. Phys. Rev. A
**2009**, 79, 051602. [Google Scholar] [CrossRef] - ’t Hooft, G.; Veltman, M. Regularization and renormalization of gauge fields. Nucl. Phys. B
**1972**, 44, 189–213. [Google Scholar] [CrossRef][Green Version] - Kleinert, H.; Schulte-Frohlinde, V. Critical Properties of ϕ
^{4}Theories; World Scientific: Singapore, 2001. [Google Scholar] - Zeidler, E. Quantum Field Theory II: Quantum Electrodynamics; Springer: Berlin, Germany, 2009. [Google Scholar]
- Mora, C.; Castin, Y. Ground State Energy of the Two-Dimensional Weakly Interacting Bose Gas: First Correction Beyond Bogoliubov Theory. Phys. Rev. Lett.
**2009**, 102, 180404. [Google Scholar] [CrossRef] [PubMed][Green Version]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).