Zero-Temperature Equation of State of a Two-Dimensional Bosonic Quantum Fluid with Finite-Range Interaction
Abstract
:1. Introduction
2. Zero-Temperature Equation of State of a Two-Dimensional Bosonic Quantum Fluid
2.1. Superfluid Parametrization of the Bosonic Field
2.2. Zero-Temperature Equation of State
2.3. Explicit Implementation for Finite-Range Interaction
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Landau, L.D. Theory of the Superfluidity of Helium II. Phys. Rev. 1941, 60, 356–358. [Google Scholar] [CrossRef]
- Kapitza, P. Viscosity of Liquid Helium below the λ-Point. Nature 1938, 141, 74. [Google Scholar] [CrossRef]
- Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science 1995, 269, 198–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, K.B.; Mewes, M.-O.; Andrews, M.R.; van Druten, N.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett. 1995, 75, 3969–3973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, C.C.; Sackett, C.A.; Tollett, J.J.; Hulet, R.G. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. Phys. Rev. Lett. 1995, 75, 1687–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 1999, 71, 463–512. [Google Scholar] [CrossRef] [Green Version]
- Mermin, N.D.; Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 1966, 17, 1133–1136. [Google Scholar] [CrossRef]
- Hohenberg, P.C. Existence of long-range order in one and two dimensions. Phys. Rev. 1967, 158, 383–386. [Google Scholar] [CrossRef]
- Schick, M. Two-dimensional system of hard-core bosons. Phys. Rev. A 1971, 3, 1067–1073. [Google Scholar] [CrossRef]
- Popov, V.N. On the theory of the superfluidity of two- and one-dimensional bose systems. Theor. Math. Phys. 1972, 11, 565–573. [Google Scholar] [CrossRef]
- Pastukhov, V. Ground-State Properties of a Dilute Two-Dimensional Bose Gas. J. Low Temp. Phys. 2018, 1–12. [Google Scholar] [CrossRef]
- Salasnich, L. Nonuniversal Equation of State of the Two-Dimensional Bose Gas. Phys. Rev. Lett. 2017, 118, 130402. [Google Scholar] [CrossRef] [PubMed]
- Beane, S.R. Effective-range corrections to the ground-state energy of the weakly-interacting Bose gas in two dimensions. Eur. Phys. J. D 2018, 72, 55. [Google Scholar] [CrossRef] [Green Version]
- Braaten, E.; Hammer, H.-W.; Hermans, S. Nonuniversal effects in the homogeneous Bose gas. Phys. Rev. A 2001, 63, 063609. [Google Scholar] [CrossRef]
- Cappellaro, A.; Salasnich, L. Thermal field theory of bosonic gases with finite-range effective interaction. Phys. Rev. A 2017, 95, 033627. [Google Scholar] [CrossRef]
- Cappellaro, A.; Salasnich, L. Finite-range corrections to the thermodynamics of the one-dimensional Bose gas. Phys. Rev. A 2017, 96, 063610. [Google Scholar] [CrossRef]
- Nagaosa, N. Quantum Field Theory in Condensed Matter Physics; Springer: Berlin, Germany, 1999. [Google Scholar]
- Leggett, A.J. Quantum Liquids; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Salasnich, L. Hydrodynamics of Bose and Fermi superfluids at zero temperature: The superfluid nonlinear Schrödinger equation. Laser Phys. 2009, 19, 642–646. [Google Scholar] [CrossRef]
- Berezinskii, V.L. Destruction of long-range order in one-dimensional and two-dimensional system possessing a continous symmetry group—II. Quantum systems. Sov. Phys.-JETP 1971, 34, 1144–1156. [Google Scholar]
- Kosterlitz, L.M.; Thouless, D.J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 1973, 6, 1181–1203. [Google Scholar] [CrossRef] [Green Version]
- Coste, C. Nonlinear Schrödinger equation and superfluid hydrodynamics. Eur. Phys. J. B 1998, 1, 245–253. [Google Scholar] [CrossRef]
- Altland, A.; Simons, B.D. Condensed Matter Field Theory; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Bogoliubov, N.N. On the theory of superfluidity. J. Phys. 1947, 11, 23. [Google Scholar]
- Salasnich, L.; Toigo, F. Zero-point energy of ultracold atoms. Phys. Rep. 2016, 640, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Tononi, A.; Cappellaro, A.; Salasnich, L. Condensation and superfluidity of dilute Bose gases with finite-range interaction. New J. Phys. 2018, 20, 125007. [Google Scholar] [CrossRef]
- Astrakharchik, G.E.; Boronat, J.; Casulleras, J.; Kurbakov, I.L.; Lozovik, Yu.E. Equation of state of a weakly interacting two-dimensional Bose gas studied at zero temperature by means of quantum Monte Carlo methods. Phys. Rev. A 2009, 79, 051602. [Google Scholar] [CrossRef]
- ’t Hooft, G.; Veltman, M. Regularization and renormalization of gauge fields. Nucl. Phys. B 1972, 44, 189–213. [Google Scholar] [CrossRef] [Green Version]
- Kleinert, H.; Schulte-Frohlinde, V. Critical Properties of ϕ4 Theories; World Scientific: Singapore, 2001. [Google Scholar]
- Zeidler, E. Quantum Field Theory II: Quantum Electrodynamics; Springer: Berlin, Germany, 2009. [Google Scholar]
- Mora, C.; Castin, Y. Ground State Energy of the Two-Dimensional Weakly Interacting Bose Gas: First Correction Beyond Bogoliubov Theory. Phys. Rev. Lett. 2009, 102, 180404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tononi, A. Zero-Temperature Equation of State of a Two-Dimensional Bosonic Quantum Fluid with Finite-Range Interaction. Condens. Matter 2019, 4, 20. https://doi.org/10.3390/condmat4010020
Tononi A. Zero-Temperature Equation of State of a Two-Dimensional Bosonic Quantum Fluid with Finite-Range Interaction. Condensed Matter. 2019; 4(1):20. https://doi.org/10.3390/condmat4010020
Chicago/Turabian StyleTononi, Andrea. 2019. "Zero-Temperature Equation of State of a Two-Dimensional Bosonic Quantum Fluid with Finite-Range Interaction" Condensed Matter 4, no. 1: 20. https://doi.org/10.3390/condmat4010020