Hypoxia Activates HIF-1α and Affects Gene Expression and Transcriptional Regulation of PHD in Tegillarca granosa
Abstract
1. Introduction
2. Materials and Methods
2.1. Hypoxia Stress Experiment
2.1.1. Experimental Samples Preparation
2.1.2. Hypoxia Experiment and Tissue Collection
2.2. PCR Amplification of Tg-HIF-1α ORF and Sequence Analysis of Tg-HIF-1α
2.3. Quantitative Real-Time PCR
2.4. Amplification of Tg-PHD and Tg-Hb Promoter and Construction of Recombinant Plasmid
2.5. HEK293T Cell Culture, Transient Transfection, and Transcriptional Regulation of Tg-PHD and Tg- Hb by Tg-HIF-1α under Hypoxia
2.6. Statistical Analysis
3. Results
3.1. The Characterization of Tg-HIF-1α
3.2. Differential Expression of Tg-HIF-1α and Tg-PHD in Different Tissues
3.3. Expression of Tg-HIF-1α and Tg-PHD under Different DO Concentrations
3.4. Hypoxia Affected mRNA Expression of Tg-Hb and Tg-Mb
3.5. Transcription Activity Assay of Tg-HIF-1α on Tg-PHD and Tg-Hb
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Chen, C.C.; Gong, G.C.; Shiah, F.K. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world. Mar. Environ. Res. 2007, 64, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Brouwer, M. Hypoxia-inducible factor, gsHIF, of the grass shrimp Palaemonetes Pugio: Molecular characterization and response to hypoxia. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 147, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Velislava, T.; Vadeboncoeur, C.; Ting, J.; Perr, S.F. Effects of hypoxia-induced gill remodeling on the innervation and distribution of ionocytes in the gill of goldfish, Carassius auratus. J. Comp. Neurol. 2014, 522, 118–130. [Google Scholar]
- Ledford, H.; Callaway, E. Biologists who decoded how cells sense oxygen win medicine Nobel. Nature 2019, 574, 161–162. [Google Scholar] [CrossRef] [PubMed]
- Kewley, R.J.; Whitelaw, M.L.; Chapman, S.A. The mammalian basic helix-loop-helix/PAS’ family of transcriptional regulators. Int. J. Biochem. Cell Biol. 2004, 36, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Kaelin, W.G.; Ratcliffe, P.J. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol. Cell. 2008, 30, 393–402. [Google Scholar] [CrossRef]
- Epstein, A.C.; Gleadle, J.M.; McNeill, L.A.; Hewitson, K.S. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001, 107, 43–54. [Google Scholar] [CrossRef]
- Appelhoff, R.J.; Tian, Y.M.; Raval, R.R. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 2004, 279, 38458–38465. [Google Scholar] [CrossRef]
- Yu, F.; White, S.B.; Zhao, Q.; Lee, F.S. HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl. Acad. Sci. USA. 2001, 98, 9630–9635. [Google Scholar] [CrossRef]
- Hon, W.C.; Wilson, M.I.; Harlos, K.; Claridge, T.W.; Schofield, C.J.; Pugh, C.W.; Maxwell, P.H.; Ratcliffe, P.J.; Stuart, D.I.; Jones, E.Y. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 2002, 417, 975–978. [Google Scholar] [CrossRef]
- Semenza, G.L. The genomics and genetics of oxygen homeostasis. Annu. Rev. Genom. Hum. Genet. 2020, 21, 183–204. [Google Scholar] [CrossRef] [PubMed]
- Pugh, C.W.; O’Rourke, J.F.; Nagao, M.; Gleadle, J.M.; Ratcliffe, P.J. Activation of hypoxia-inducible factor-1; Definition of regulatory domains within the alpha subunit. J. Bio. Chem. 1997, 272, 11205–11214. [Google Scholar] [CrossRef]
- Yu, A.; Frid, M.G.; Shimoda, L.A.; Wiener, C.M.; Stenmark, K.; Semenza, G.L. Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible Factor-1 in the lung. Am. J. Physiol. 1998, 275, L818–L826. [Google Scholar] [CrossRef] [PubMed]
- Kallio, P.J.; Okamoto, K.; O’Brien, S.; Carrero, P.; Makino, Y.; Tanaka, H.; Poellinger, L. Signal transduction in hypoxic cells: Inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1 alpha. EMBO J. 1998, 17, 6573–6586. [Google Scholar] [CrossRef]
- Wenger, R.H.; Camenisch, G.; Stiehl, D.P.; Katschinski, D.M. HIF prolyl-4-hydroxylase interacting proteins: Consequences for drug targeting. Curr. Pharm. Des. 2009, 15, 3886–3894. [Google Scholar] [CrossRef]
- Rytkönen, K.T.; Williams, T.A.; Renshaw, G.M.; Primmer, C.R.; Nikinmaa, M. Molecular evolution of the metazoan PHD-HIF oxygen-sensing system. Mol. Biol. Evol. 2011, 28, 1913–1926. [Google Scholar] [CrossRef] [PubMed]
- Roesner, A.; Mitz, S.A.; Hankeln, T.; Burmester, T. Globins and hypoxia adaptation in the goldfish, Carassius auratus. FEBS J. 2008, 275, 3633–3643. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.W.; Xiao, S.S.; Zhang, R.; Liu, L.L.; Zhu, H. Physiological changes and transcriptional modulation of HIF-αs in Siberian sturgeon in response to hypoxia. Aquaculture 2021, 545, 737219. [Google Scholar] [CrossRef]
- Xiao, W.H. The hypoxia signaling pathway and hypoxic adaptation in fishes. Sci. China Life Sci. 2015, 58, 148–155. [Google Scholar] [CrossRef]
- Dunwoodie, S.L. The role of hypoxia in development of the mammalian embryo. Dev. Cell. 2009, 17, 755–773. [Google Scholar] [CrossRef]
- Gary, J.S.; Wu, R.S.; Ying, Y. Effects of hypoxia and organic enrichment on the coastal marine environment. Mar. Ecol. Prog. Ser. 2002, 238, 249–279. [Google Scholar] [CrossRef]
- Wang, T.; Meng, J.; Li, L.; Zhang, G.F. Characterization of CgHIFα-Like, a novel bHLH-PAS transcription factor family member, and its role under hypoxia stress in the Pacific oyster Crassostrea gigas. PLoS ONE. 2016, 11, e0166057. [Google Scholar] [CrossRef]
- Shen, G.Y.; Huang, L.F.; Guo, F. Marine Ecology, 3rd ed.; Science Press China: Beijing, China, 2010; pp. 100–125. [Google Scholar]
- Lappin, T.R.; Lee, F.S. Update on mutations in the HIF: EPO pathway and their role in erythrocytosis. Blood Rev. 2019, 37, 100590. [Google Scholar] [CrossRef] [PubMed]
- Gorr, T.A.; Cahn, J.D.; Yamagata, H.F. Hypoxia-induced synthesis of hemoglobin in the crustacean Daphnia magna is hypoxia-inducible factor-dependent. J. Biol. Chem. 2004, 279, 36038–36047. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.B.; Wang, J.; Li, C.; Li, P.; Wang, S.; Lin, Z. A preliminary study on the antibacterial mechanism of Tegillarca granosa hemoglobin by derived peptides and peroxidase activity. Fish Shellfish Immunol. 2016, 51, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Zha, S.J.; Peng, Z.L.; Lin, Z.H.; Bao, Y.B. Hypoxia-mediated immunotoxicity in the blood clam Tegillarca granosa. Mar. Environ. Res. 2022, 177, 105632. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.B.; Wang, Q.; Lin, Z.H. Hemoglobin of the blood clam Tegillarca granosa (Tg-HbI) is involved in the immune response against bacterial infection. Fish Shellfish Immunol. 2011, 31, 517–523. [Google Scholar] [CrossRef]
- Bao, Y.B.; Zeng, Q.F.; Wang, J.; Zhang, Z.L.; Zhang, Y.; Wang, S.F.; Wong, N.K.; Yuan, W.B.; Huang, Y.Y.; Zhang, W.F.; et al. Genomic insights into the origin and evolution of molluscan red-bloodedness in the blood clam Tegillarca granosa. Mol. Biol. Evol. 2021, 38, 2351–2365. [Google Scholar] [CrossRef]
- Riggs, A.F.; Gorr, T.A. A globin in every cell. Proc. Natl. Acad. Sci USA. 2006, 103, 2469–2470. [Google Scholar] [CrossRef]
- Zha, S.J.; Rong, J.H.; Guan, X.F.; Tang, Y.; Han, Y.; Liu, G.X. Immunotoxicity of four nanoparticles to a marine bivalve species, Tegillarca granosa. J. Hazard. Mater. 2019, 377, 237–248. [Google Scholar] [CrossRef]
- Zhang, W. Influence of hypoxia stress on physiological metabolism of Ruditapes philippinarum. Chin. J. Ecol. 2014, 33, 2448–2453. [Google Scholar]
- Mu, Y.N.; Li, W.R.; He, L.H.; Chen, J.; Chen, X.H. Transcriptome analysis reveals new insights into immune response to hypoxia challenge of large yellow croaker (larimichthys crocea). Fish. Shellfish Immun. 2020, 98, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.W.; Wu, B.; Liu, Z.L.; Zhou, L.Q.; Sun, X.J.; Zhao, Q.; Yang, A.G. Structural characteristics of HIF-1α from Scapharca broughtonii and expression analysis under hypoxia. J. Fish. Sci. China. 2019, 26, 646–656. [Google Scholar]
- Wu, L. Effects of hypoxic preconditioning on the physiological and biochemical characteristics of Scapharca broughtonii under hypoxia stress. Prog. Fish. Sci. 2022, 43, 1–10. [Google Scholar]
- Piontkivska, H.; Chung, J.S.; Ivanina, A.V.; Sokolov, E.P.; Techa, S.; Sokolova, I.M. Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): Hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD). Comp. Biochem. Physiol. Part D Genom. Proteom. 2011, 6, 103–114. [Google Scholar] [CrossRef]
- Kawabe, S.; Yokoyama, Y. Role of hypoxia-inducible factor alpha in response to hypoxia and heat shock in the Pacific oyster Crassostrea gigas. Mar. Biotechnol. 2012, 14, 106–119. [Google Scholar] [CrossRef]
- Soñanez, O.J.G.; Peregrino, A.B.; Gómez, J.S.; López, Z.A.; Forman, H.J.; Plascencia, Y.G. Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 150, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Hardy, K.M.; Follett, C.R.; Burnett, L.E.; Lema, S.C. Gene transcripts encoding hypoxia-inducible factor (HIF) exhibit tissue and muscle fiber type-dependent responses to hypoxia and hypercapnic hypoxia in the Atlantic blue crab, Callinectes sapidus. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2012, 163, 137–146. [Google Scholar] [CrossRef]
- Soitamo, A.J.; Rabergh, C.M.; Gassmann, M.; Sistonen, L.; Nikinmaa, M. Characterization of a hypoxia-inducible factor (HIF-1a) from rainbow trout accumulation of protein occurs at normal venous oxygen tension. J. Biol. Chem. 2001, 276, 19699–19705. [Google Scholar] [CrossRef]
- Cai, X.H.; Huang, Y.T.; Zhang, X.; Wang, S.; Zou, Z.H.; Wang, G.D.; Wang, Y.L.; Zhang, Z.P. Cloning, characterization, hypoxia, and heat shock response of hypoxia inducible factor-1 (HIF-1) from the small abalone Haliotis diversicolor. Gene 2014, 534, 256–264. [Google Scholar] [CrossRef]
- Wang, T. The Molecular Mechanism of Hypoxia Signal Pathway in the Pacific Oyster (Crassostrea gigas). Ph.D. Thesis, University of Chinese Academy of Science, Beijing, China, 2017; pp. 1–135, (In Chinese with an English abstract). [Google Scholar]
- Berra, E.; Ginouvés, A.; Pouysségur, J. The hypoxia-inducible factor hydroxylases bring fresh air into hypoxia signaling. EMBO Rep. 2006, 7, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Rosner, A.; Hankeln, T.; Burmester, T. Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). Exp. Biol. 2006, 209, 2129–2137. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.S.; Qi, Z.T.; Tian, J.Y.; Qiu, M.; Zhao, W.H.; Wang, A.M.; Huang, J.T.; Guo, X.J. Cloning of hemoglobin-α1 from half-smooth tongue sole (Cynoglossus semilaevis) and its expression under short-term hypoxia. Zool. Res. 2011, 32, 641–646. [Google Scholar]
- Spriggs, K.A.; Bushell, M.; Willis, A.E. Translational regulation of gene expression during conditions of cell stress. Mol. Cell 2010, 40, 228–237. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Primer Sequence (5′-3′) | Application | Length (bp) |
---|---|---|---|
qPCR-Tg-HIF-1α-F | ATTCCAGCCCAGACCTT | qRT-PCR | 106 |
qPCR-Tg-HIF-1α-R | GGGAGCCAAATGAGTAAGA | ||
qPCR-Tg-PHD-F | GACGTGCCAGAAGGAAT | qRT-PCR | 134 |
qPCR-Tg-PHD-R | CGATAATAAGAGGCTTTACACT | ||
qPCR-Tg-HbI-F | TACTTCAAGCGTTTGGGAGA | qRT-PCR | 116 |
qPCR-Tg-HbI-R | GCTGGGCTGTCGAGATGA | ||
qPCR-Tg-HbIIA-F | GACATACGCACTCAACAACTT | qRT-PCR | 114 |
qPCR-Tg-HbIIA-R | AATGCTTCGGCACTGAT | ||
qPCR-Tg-HbIIB-F | GGACACGCCATCACCTT | qRT-PCR | 172 |
qPCR-Tg-HbIIB-R | TTGCCTTCAATACTGCTCTAA | ||
qPCR-Tg-HbIII-F | AAATGGCGTAGCTCTAATG | qRT-PCR | 195 |
qPCR-Tg-HbIII-R | TTTCGTGCAACATCTTCTA | ||
qPCR-Tg-MbI-F | AGCATGGCGTTGAACTA | qRT-PCR | 141 |
qPCR-Tg-MbI-R | CATACATAAATGTGGTGGC | ||
qPCR-Tg-MbII-F | GTTGGGCATATCTTGAATC | qRT-PCR | 150 |
qPCR-Tg-MbII-R | GACCACGCATACTACGG | ||
qPCR-Tg-18S rRNA-F | CTTTCAAATGTCTGCCCTATCAACT | qRT-PCR | 148 |
qPCR-Tg-18S rRNA-R | TCCCGTATTGTTATTTTTCGTCACT | qRT-PCR | |
PGL3-Tg-HbI-F | CGAGCTCTTACCCTTCCCGTCTTC | HbI | 1745 |
PGL3-Tg-HbI-R | CCCTCGAGTTAGCCCAACCTCACAA | ||
PGL3-Tg-HbIIA-F | CGAGCTCAGGTCAGATGTACCAGCAC | HbIIA | 2071 |
PGL3-Tg-HbIIA-R | CCCTCGAGTTCCGCAACAGAAAGAG | ||
PGL3-Tg-HbIIB-F | CGAGCTCATTTGTGGCAGCGTTCA | HbIIB | 1593 |
PGL3-Tg-HbIIB-R | CCCTCGAGAAAGGGCGTCTGTAGCA | ||
PGL3-Tg-HbIII-F | CGAGCTCCTTTAAGGCTTGTCACTC | HbIII | 1655 |
PGL3-Tg-HbIII-R | CCCTCGAGCAACCTCTGGGTCTGTG | ||
PGL3-Tg-PHD-F | CGAGCTCTTGCCTTTGTCTTTCTC | PHD | 1844 |
PGL3-Tg-PHD-R | CCCTCGAGTTCTTCAGGACCTATGC | ||
pcDNA3.1-Tg-HIF-1α-F | CGGGATCCAAATGGCCGGTAAAAGAAG | HIF-1α | 2142 |
pcDNA3.1-Tg-HIF-1α-R | CCCTCGAGCTTTTTTCCTCAATAATGCTG |
HLH | PAS-A | PAS-B | PAC | ORF | |
---|---|---|---|---|---|
S. broughtoniiHIF-1α | 98.15 | 88.06 | 94.03 | 95.45 | 87.96 |
T. kiyonoi HIF-1α | 87.04 | 79.10 | 86.57 | 84.09 | 69.49 |
C. virginica HIF-1α | 60.71 | 58.21 | 62.96 | 77.27 | 47.55 |
H. discusi HIF-1α | 58.93 | 53.73 | 73.13 | 75.00 | 43.69 |
D. rerio HIF-1α | 62.96 | 47.76 | 55.22 | 59.09 | 29.77 |
M. musculus HIF-1α | 55.36 | 49.25 | 62.69 | 61.36 | 28.43 |
H. sapiensHIF-1α | 55.36 | 49.25 | 62.69 | 61.36 | 28.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Liu, X.; Jin, M.; Zhan, Y.; Zhang, X.; Bao, Y.; Liu, M. Hypoxia Activates HIF-1α and Affects Gene Expression and Transcriptional Regulation of PHD in Tegillarca granosa. Fishes 2023, 8, 359. https://doi.org/10.3390/fishes8070359
Peng Z, Liu X, Jin M, Zhan Y, Zhang X, Bao Y, Liu M. Hypoxia Activates HIF-1α and Affects Gene Expression and Transcriptional Regulation of PHD in Tegillarca granosa. Fishes. 2023; 8(7):359. https://doi.org/10.3390/fishes8070359
Chicago/Turabian StylePeng, Zhilan, Xiaomin Liu, Ming Jin, Yu Zhan, Xiaolin Zhang, Yongbo Bao, and Minhai Liu. 2023. "Hypoxia Activates HIF-1α and Affects Gene Expression and Transcriptional Regulation of PHD in Tegillarca granosa" Fishes 8, no. 7: 359. https://doi.org/10.3390/fishes8070359
APA StylePeng, Z., Liu, X., Jin, M., Zhan, Y., Zhang, X., Bao, Y., & Liu, M. (2023). Hypoxia Activates HIF-1α and Affects Gene Expression and Transcriptional Regulation of PHD in Tegillarca granosa. Fishes, 8(7), 359. https://doi.org/10.3390/fishes8070359