Reproduction of Hatchery-Reared Pike-Perch (Sander lucioperca) Fed Diet with Low-Marine-Ingredients: Role of Dietary Fatty Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet Analysis
2.2. Fish Origin
2.3. Artificial Reproduction Procedure
2.4. Eggs’ FA Profile Analysis
2.5. Plasma Glucose and Immunoglobulin (Ig) Analysis
2.6. Plasma Sex Hormone Analysis
2.7. Data Presentation and Analysis
3. Results
3.1. FA Content of Eggs
3.2. Reproductive Performance
3.3. Sex Steroid Level, Stress, and Immune Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Policar, T.; Schaefer, F.J.; Panana, E.; Meyer, S.; Teerlinck, S.; Toner, D.; Żarski, D. Recent progress in European percid fish culture production technology—Tackling bottlenecks. Aquacult. Int. 2019, 27, 1151–1174. [Google Scholar] [CrossRef]
- Zakęś, Z. Sander lucioperca. Cultured Aquatic Species Information Programme. In Fisheries and Aquaculture Division [Online]; Updated 2012-03-16; FAO: Rome, Italy, 2023. [Google Scholar]
- Křišťan, J.; Stejskal, V.; Policar, T. Comparison of reproduction characteristics and broodstock mortality in farmed and wild Eurasian perch (Perca fluviatilis L.) females during spawning season under controlled conditions. Turk. J. Fish. Aquat. Sci. 2012, 12, 191–197. [Google Scholar] [CrossRef]
- Zupa, R.; Rodríguez, C.; Mylonas, C.C.; Rosenfeld, H.; Fakriadis, I.; Papadaki, M.; Pérez, J.A.; Pousis, C.; Basilone, G.; Corriero, A. Comparative study of reproductive development in wild and captive-reared greater amberjack Seriola dumerili (Risso, 1810). PLoS ONE 2017, 12, e0169645. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.S.; Fernández-Palacios, H.; Tacon, A.G.J. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 2001, 197, 25–42. [Google Scholar] [CrossRef]
- Reading, B.J.; Andersen, L.K.; Ryu, Y.-W.; Mushirobira, Y.; Todo, T.; Hiramatsu, N. Oogenesis and egg quality in finfish: Yolk formation and other factors influencing female fertility. Fishes 2018, 3, 45. [Google Scholar] [CrossRef]
- Salze, G.; Tocher, D.R.; Roy, W.J.; Robertson, D.A. Egg quality determinants in cod (Gadus morhua L.): Egg performance and lipids in eggs from farmed and wild broodstock. Aquac. Res. 2005, 36, 1488–1499. [Google Scholar] [CrossRef]
- Johnson, R.B. Lipid deposition in oocytes of teleost fish during secondary oocyte growth. Rev. Fish. Sci. 2009, 17, 78–89. [Google Scholar] [CrossRef]
- Bell, J.G.; Sargent, J.R. Arachidonic acid in aquaculture feeds: Current status and future opportunities. Aquaculture 2003, 218, 491–499. [Google Scholar] [CrossRef]
- Ljubobratović, U.; Péter, G.; Horváth, Z.; Żarski, D.; Ristović, T.; Percze, V.; Sándor, Z.; Lengyel, S.; Rónyai, A. Reproductive performance of indoor-reared pikeperch (Sander lucioperca) females after wintering in outdoor earthen ponds. Aquac. Res. 2017, 48, 4851–4863. [Google Scholar] [CrossRef]
- Näslund, J. Reared to become wild-like: Addressing behavioral and cognitive deficits in cultured aquatic animals destined for stocking into natural environments—A critical review. Bull. Mar. Sci. 2021, 97, 489–538. [Google Scholar] [CrossRef]
- Benedek, I.; Molnár, T. Size Preference of Live Fish Prey in the Pellet-Consuming Pikeperch. Appl. Sci. 2023, 13, 2259. [Google Scholar] [CrossRef]
- Ljubobratović, U.; Péter, G.; Demény, F.; Kugyela, N.; Horváth, A.; Pataki, B.; Horváth, Z.; Sándor, Z.J.; Rónyai, A. Reproductive performance in virgin pikeperch (Sander lucioperca L.) females fed different dietary levels of arachidonic acid with respect to the duration of spawning induction. Aquac. Rep. 2020, 18, 100430. [Google Scholar] [CrossRef]
- Simon, C. Effect of Maturation Diets on the Reproductive Quality of Pikeperch, Sander lucioperca (Linnaeus, 1758). MsC Thesis, Faculty of Bioscience Engineering, University Gent, Ghent, Belgium, 2015. Available online: https://libstore.ugent.be/fulltxt/RUG01/002/216/945/RUG01-002216945_2015_0001_AC.pdf (accessed on 19 March 2023).
- Pal, A.; Metherel, A.H.; Fiabane, L.; Buddenbaum, N.; Bazinet, R.P.; Shaikh, S.R. Do Eicosapentaenoic Acid and Docosahexaenoic Acid Have the Potential to Compete against Each Other? Nutrients 2020, 12, 3718. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.J.; Lei, C.X.; Ji, H.; Kaneko, G.; Zhou, J.S.; Yu, H.B.; Li, Y.; Yu, E.M.; Xie, J. Comparative analysis of effects of dietary arachidonic acid and EPA on growth, tissue fatty acid composition, antioxidant response and lipid metabolism in juvenile grass carp, Ctenopharyngodon idellus. Br. J. Nutr. 2017, 118, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Cao, L.; Wei, Y.; Zhang, Y.; Liang, M. Effects of different dietary DHA:EPA ratios on gonadal steroidogenesis in the marine teleost, tongue sole (Cynoglossus semilaevis). Br. J. Nutr. 2017, 118, 179–188. [Google Scholar] [CrossRef]
- Bruce, M.; Oyen, F.; Bell, G.; Asturiano, J.F.; Farndale, B.; Carrillo, M.; Zanuy, S.; Ramos, J.; Bromage, N. Development of broodstock diets for the European Sea Bass (Dicentrarchus labrax) with special emphasis on the importance of n−3 and n−6 highly unsaturated fatty acid to reproductive performance. Aquaculture 1999, 177, 85–97. [Google Scholar] [CrossRef]
- Henrotte, E.; Mandiki, R.S.N.M.; Prudencio, A.T.; Vandecan, M.; Mélard, C.; Kestemont, P. Egg and larval quality, and egg fatty acid composition of Eurasian perch breeders (Perca fluviatilis) fed different dietary DHA/EPA/AA ratios. Aquac. Res. 2010, 41, e53–e61. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000.
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Stoffel, W.; Chu, F.; Ahrens, E.H. Analysis of long-chain fatty acids by gas-liquid chromatography. Anal. Chem. 1959, 31, 307–308. [Google Scholar] [CrossRef]
- Ackman, R.G.; Sipos, J.C. Application of specific response factors in the gas chromatographic analysis of methyl esters of fatty acids with flame ionization detectors. J. Am. Oil Chem. Soc. 1964, 41, 377–378. [Google Scholar] [CrossRef]
- Ackman, R.G.; Sipos, J.C. Flame ionization detector response for the carbonyl carbon atom in the carboxyl group of fatty acids and esters. J. Chromatogr. A 1964, 16, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Halver, J.E.; Hardy, R.W. Fish Nutrition, 3rd ed.; Academic Press Inc.: San Diego, CA, USA, 2002; pp. 259–308. [Google Scholar] [CrossRef]
- Żarski, D.; Kucharczyk, D.; Targońska, K.; Palińska, K.; Kupren, K.; Pascal Fontaine, P.; Kestemont, P. A new classification of pre-ovulatory oocyte maturation stages in pikeperch, (Sander lucioperca L.), and its application during artificial reproduction. Aquac. Res. 2012, 43, 713–721. [Google Scholar] [CrossRef]
- Żarski, D.; Horváth, Á.; Bernáth, G.; Krejszeff, S.; Radóczi, J.; Palińska-Żarska, K.; Bokor, Z.; Kupren, K.; Urbányi, B. Collection of gametes. In Controlled Reproduction of Wild Eurasian Perch. SpringerBriefs in Environmental Science; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ljubobratović, U.; Péter, G.; Alvestad, R.; Horváth, Z.; Rónyai, A. Alcalase enzyme treatment affects egg incubation and larval quality in pikeperch (Sander lucioperca). Aquacult. Int. 2019, 27, 917–929. [Google Scholar] [CrossRef]
- Kaluzny, M.A.; Duncan, L.A.; Merritt, M.V.; Epps, D.E. Rapid separation of lipid classes in high yield and purity using bonded phase columns. J. Lipid Res. 1985, 26, 135–140. [Google Scholar] [CrossRef]
- Page, M.; Thorpe, R. Purification of IgG by Precipitation with Polyethylene Glycol (PEG). In The Protein Protocols Handbook. Springer Protocols Handbooks; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2002. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Guarner-Lans, V.; Soria-Castro, E.; Manzano-Pech, L.; Palacios-Chavarría, A.; Valdez-Vázquez, R.R.; Domínguez-Cherit, J.G.; Herrera-Bello, H.; Castillejos-Suastegu, H.; Moreno-Castañeda, L.; et al. Alteration in the lipid profile and the desaturases activity in patients with severe pneumonia by SARS-CoV-2. Front. Physiol. 2021, 12, 624. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 21.0; IBM Corp.: Armonk, NY, USA, 2012. [Google Scholar]
- Visentainer, J.V.; de Souza, N.E.; Makoto, M.; Hayashi, C.; Franco, M.R.B. Influence of diets enriched with flaxseed oil on the α-linolenic, eicosapentaenoic and docosahexaenoic fatty acid in Nile tilapia (Oreochromis niloticus). Food Chem. 2005, 90, 557–560. [Google Scholar] [CrossRef]
- Gibson, R.A.; Muhlhausler, B.; Makrides, M. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern. Child Nutr. 2011, 7, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Goyens, P.L.L.; Spilker, M.E.; Zock, P.L.; Katan, M.B.; Mensink, R.P. Conversion of α-linolenic acid in humans is influenced by the absolute amounts of α-linolenic acid and linoleic acid in the diet and not by their ratio. Am. J. Clin. Nutr. 2006, 84, 44–53. [Google Scholar] [CrossRef]
- Falahatkar, B.; Poursaeid, S. Effects of hormonal manipulation on stress responses in male and female broodstocks of pikeperch Sander lucioperca. Aquacult. Int. 2014, 22, 235–244. [Google Scholar] [CrossRef]
- Milla, S.; Pasquet, A.; El Mohajer, L.; Fontaine, P. How domestication alters fish phenotypes. Rev. Aquac. 2021, 13, 388–405. [Google Scholar] [CrossRef]
- Martínez-Porchas, M.; Martínez-Córdova, L.R.; Ramos-Enriquez, R. Cortisol and glucose: Reliable indicators of fish stress? Pan-Am. J. Aquat. Sci. 2009, 4, 158–178. [Google Scholar]
- Birkle, D.L.; Sanitato, J.J.; Kaufman, H.E.; Bazan, N.G. Arachidonic acid metabolism to eicosanoids in herpes virus-infected rabbit cornea. Invest. Ophthalmol. Vis. Sci. 1986, 27, 1443–1446. [Google Scholar]
- Gromovsky, A.D.; Schugar, R.C.; Brown, A.L.; Helsley, R.N.; Burrows, A.C.; Ferguson, D.; Zhang, R.; Sansbury, B.E.; Lee, R.G.; Morton, R.E.; et al. Δ-5 fatty acid desaturase fads1 impacts metabolic disease by balancing proinflammatory and proresolving lipid mediators. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Sankian, Z.; Khosravi, S.; Kim, Y.O.; Lee, S.M. Total replacement of dietary fish oil with alternative lipid sources in a practical diet for mandarin fish, Siniperca scherzeri, juveniles. Fish Aquat. Sci. 2019, 22, 8. [Google Scholar] [CrossRef]
- Høstmark, A.T.; Haug, A. Percentages of oleic acid and arachidonic acid are inversely related in phospholipids of human sera. Lipids Health Dis. 2013, 12, 106. [Google Scholar] [CrossRef]
- Listenberger, L.L.; Han, X.; Lewis, S.E.; Cases, S.; Farese, R.V., Jr.; Ory, D.S.; Schaffer, J.E. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA 2003, 100, 3077–3082. [Google Scholar] [CrossRef]
- Bellenger, J.; Bellenger, S.; Clément, L.; Mandard, S.; Diot, C.; Poisson, J.P.; Narce, M. A new hypotensive polyunsaturated fatty acid dietary combination regulates oleic acid accumulation by suppression of stearoyl CoA desaturase 1 gene expression in the SHR model of genetic hypertension. FASEB J. 2004, 18, 773–775. [Google Scholar] [CrossRef]
- Friesen, R.W.; Innis, S.M. Linoleic acid is associated with lower long-chain n–6 and n–3 fatty acids in red blood cell lipids of Canadian pregnant women. Am. J. Clin. Nutr. 2010, 91, 23–31. [Google Scholar] [CrossRef]
- Rett, B.S.; Whelan, J. Increasing dietary linoleic acid does not increase tissue arachidonic acid content in adults consuming Western-type diets: A systematic review. Nutr. Metab. 2011, 8, 36. [Google Scholar] [CrossRef]
- Zou, H.; Yuan, C.; Dong, L.; Sidhu, R.S.; Hong, Y.H.; Kuklev, D.V.; Smith, W.L. Human cyclooxygenase-1 activity and its responses to COX inhibitors are allosterically regulated by nonsubstrate fatty acids. J. Lipids 2012, 53, 1336–1347. [Google Scholar] [CrossRef]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- Jo-Watanabe, A.; Okuno, T.; Yokomizo, T. The role of leukotrienes as potential therapeutic targets in allergic disorders. Int. J. Mol. Sci. 2019, 20, 3580. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef] [PubMed]
- Khendek, A.; Chakraborty, A.; Roche, J.; Ledoré, Y.; Personne, A.; Policar, T.; Żarski, D.; Mandiki, R.; Kestemont, P.; Milla, S.; et al. Rearing conditions and life history influence the progress of gametogenesis and reproduction performances in pikeperch males and females. Animal 2018, 12, 2335–2346. [Google Scholar] [CrossRef] [PubMed]
- Salmon, C.; Marchelidon, J.; Fontaine-Bertrand, E.; Fontaine, Y.A. Human chorionic gonadotrophin and immature fish ovary: Characterization and mechanism of the in vitro stimulation of cyclic adenosine monophosphate accumulation. Gen. Comp. Endocrinol. 1985, 58, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Volkoff, H.; London, S. Nutrition and Reproduction in Fish. In Encyclopedia of Reproduction, 2nd ed.; Skinner, M.K., Ed.; Elsevier: Oxford, UK, 2018; imprint Academic Press; pp. 743–748. ISBN 9780128151457. [Google Scholar] [CrossRef]
- Available online: https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2012/fish-shellfish-and-fish-products---analysis-of-nutrients-rapport-1-2012.pdf (accessed on 19 March 2023).
- Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/167921/Nutrient_analysis_of_fish_and_fish_products_-_Summary_Report.pdf (accessed on 7 April 2023).
- FAO/INFOODS Global Food Composition Database for Fish and Shellfish—Version 1.0 (uFiSh1.0); FAO: Rome, Italy, 2016.
Nutrient/Feed | Forage Fish (n = 4) | COM Diet (n = 2) |
---|---|---|
dry matter | 22.26 ± 0.02 | 92.18 ± 0.10 |
crude protein | 13.92 ± 0.12 | 40.63 ± 1.09 |
crude fat | 13.18 ± 0.02 | 10.66 ± 0.04 |
crude fiber | 0 | 2.57 ± 0.36 |
crude ash | 3.87 ± 0.16 | 8.42 ± 0.11 |
gross energy (GE) * | 4.75 | 19.43 |
Lysine ** | nd | 2.618 |
Methionine ** | nd | 1.062 |
Ca ** | nd | 1.883 |
P ** | nd | 1.229 |
Fatty Acid | Forage Fish (n = 4) | COM Diet (n = 2) |
---|---|---|
14:0 | 1.57 ± 0.10 | 0.84 ± 0.02 |
16:0 (PA) | 15.39 ± 0.56 | 18.82 ± 0.16 |
16:1ω9 | 0.83 ± 0.05 | 0.29 ± 0.0 |
16:1ω7 (POA) | 8.47 ± 0.29 | 3.34 ± 0.03 |
17:0 | 0.60 ± 0.04 | 0.23 ± 0.0 |
18:0 (SA) | 3.75 ± 0.39 | 6.28 ± 0.09 |
18:1ω9 (OA) | 22.7 ± 0.12 | 25.41 ± 0.24 |
18:1ω7 | 3.49 ± 0.17 | 1.67 ± 0.16 |
18:2ω6 (LA) | 10.4 ± 1.08 | 34.9 ± 0.08 |
18:3ω6 (GLA) | 0.51 ± 0.03 | 0.0 ± 0.0 |
18:3ω3 (ALA) | 4.20 ± 0.42 | 3.01 ± 0.03 |
20:0 | 0.22 ± 0.02 | 0.17 ± 0.00 |
20:1ω9 | 1.02 ± 0.18 | 0.49 ± 0.05 |
20:2ω6 | 0.61 ± 0.10 | 0.20 ± 0.0 |
20:3ω6 (DGLA) | 0.61 ± 0.08 | 0.10 ± 0.01 |
20:4ω6 (ARA) | 3.41 ± 0.31 | 0.61 ± 0.0 |
20:3ω3 | 0.42 ± 0.01 | 0.0 ± 0.0 |
20:4ω3 (ETA) | 0.57 ± 0.02 | 0.06 ± 0.0 |
20:5ω3 (EPA) | 3.88 ± 0.15 | 0.47 ± 0.01 |
22:4ω6 | 0.33 ± 0.06 | 0.09 ± 0.13 |
22:5ω6 | 0.70 ± 0.07 | 0.05 ± 0.08 |
22:5ω3 | 1.48 ± 0.12 | 0.19 ± 0.01 |
22:6ω3 (DHA) | 6.47 ± 0.48 | 1.09 ± 0.0 |
DHA:EPA:ARA | 1.9:1.1:1 | 2.3:1:1.3 |
Lipid Fraction | PL | NL | ||
---|---|---|---|---|
Fatty Acids | F0 (n = 4) | F1 (n = 6) | F0 (n = 4) | F1 (n = 6) |
14:0 (MyA) | 1.09 ± 0.14 | 1.18 ± 0.21 | * 0.37 ± 0.04 | 0.20 ± 0.04 |
16:0 (PA) | 22.3 ± 0.58 | 24.1 ± 3.75 | 6.16 ± 2.66 | 3.91 ± 1.58 |
16:1ω9 | 2.04 ± 0.49 | 2.26 ± 0.36 | 3.46 ± 2.63 | 1.93 ± 1.23 |
16:1ω7 (POA) | 1.35 ± 0.90 | 1.97 ± 0.43 | 12.2 ± 6.70 | 9.29 ± 6.52 |
17:0 (MA) | 0.21 ± 0.17 | 0.10 ± 0.11 | * 0.63 ± 0.21 | 0.01 ± 0.03 |
18:0 PL (SA) | 5.93 ± 0.56 | 7.22 ± 1.27 | 1.78 ± 1.17 | 1.33 ± 0.64 |
18:1ω9 (OA) | * 7.88 ± 0.77 | 12.73 ± 2.01 | 13.07 ± 3.94 | 15.3 ± 1.14 |
18:1ω7 (VA) | * 1.99 ± 0.07 | 1.74 ± 0.13 | * 2.16 ± 0.30 | 0.97 ± 0.09 |
18:2ω6 (LA) | * 5.23 ± 0.67 | 11.26 ± 5.92 | * 14.98 ± 1.02 | 24.4 ± 5.34 |
18:3ω6 (GLA) | * 0.13 ± 0.12 | 0.48 ± 0.44 | 4.72 ± 3.31 | 10.34 ± 7.2 |
18:3ω3 (ALA) | 1.01 ± 0.17 | 1.28 ± 0.36 | * 3.33 ± 0.33 | 1.76 ± 0.2 |
20:0 (AA) | * 0.24 ± 0.21 | 0.12 ± 0.16 | 0.13 ± 0.15 | 0.05 ± 0.05 |
20:1ω9 | 0.29 ± 0.34 | 0.05 ± 0.13 | 0.14 ± 0.17 | 0.04 ± 0.07 |
20:2ω6 (EA) | * 0.53 ± 0.05 | 0.66 ± 0.21 | * 0.36 ± 0.08 | 0.15 ± 0.05 |
20:3ω6 (DGLA) | * 0.93 ± 0.14 | 2.07 ± 0.66 | * 0.97 ± 0.08 | 0.65 ± 0.09 |
20:4ω6 (ARA) | * 5.7 ± 0.35 | 1.32 ±1.00 | * 1.71 ± 0.16 | 0.17 ± 0.06 |
20:3ω3 | 0.13 ± 0.15 | 0 ±0 | * 0.27 ± 0.06 | 0.00 ± 0.01 |
20:4ω3 (ETA) | 0.29 ± 0.11 | 0.32 ± 0.19 | * 0.46 ± 0.07 | 0.10 ± 0.04 |
20:5ω3 (EPA) | * 3.87 ± 0.31 | 1.55 ± 0.60 | * 1.82 ± 0.16 | 0.28 ± 0.12 |
22:4ω6 (ADA) | * 0.85 ± 0.33 | 0.38 ± 0.33 | * 0.37 ± 0.01 | 0.04 ± 0.06 |
22:5ω6 | * 1.85 ± 0.24 | 0.95 ± 0.55 | * 0.72 ± 0.06 | 0.11 ± 0.08 |
22:5ω3 | * 2.25 ± 0.14 | 1.05 ± 0.23 | * 1.36 ± 0.17 | 0.26 ± 0.1 |
22:6ω3 (DHA) | * 26.2 ± 1.63 | 18.01 ± 2.19 | * 7.58 ± 1.05 | 3.22 ± 0.63 |
Lipid Fraction | PL | NL | ||
---|---|---|---|---|
Desaturase indices | F0 | F1 | F0 | F1 |
Delta5a (ARA/DGLA) | * 1.11 ± 0.13 | 0.11 ± 0.09 | * 0.31 ± 0.01 | 0.05 ± 0.02 |
Delta5b (EPA/ETA) | * 2.26 ± 0.94 | 0.47 ± 0.33 | 0.58 ± 0.05 | 0.38 ± 0.19 |
Delta6 (GLA/LA) | 0.52 ± 0.48 | ** | 6.50 ± 4.78 | ** |
Delta9a (POA/PA) | * 0.11 ± 0.07 | 0.47 ± 0.11 | 5.25 ± 5.2 | 16.1 ± 13.6 |
Delta9b (OA/SA) | * 0.22 ± 0.02 | 0.46 ± 0.14 | 2.15 ± 2.02 | 3.55 ± 1.9 |
Parameters | F0 (n = 6) | F1 (n = 6) |
---|---|---|
LT (h) | 113.33 ± 20.2 | 124.67 ± 8.71 |
Fish weight (g) | 880 ± 206.4 | 843.33 ± 199.32 |
PGSI * | 14 ± 2 | 10 ± 0.3 |
Egg size (mm) | 1.21 ± 0.05 | 1.21 ± 0.08 |
Hatching rate (%) | 78 ± 11 | 63 ± 35 |
Embryo survival (%) * | 61 ± 18 | 24 ± 23 |
Size of larvae (mm) | 4.7 ± 0.08 | 4.6 ± 0.12 |
Parameters | 48 h Postinjection | Ovulation | ||
---|---|---|---|---|
F0 (n = 6) | F1 (n = 6) | F0 (n = 6) | F1 (n = 6) | |
Glucose (nmol/L) | 2.77 ± 0.42 | 3.41 ± 0.22 | 8.9 ± 1.21 | 22.13 ± 4.72 * |
Ig (g/L) | 9.03 ± 1.8 | 17.31 ± 5.02 * | 25.15 ± 5.26 | 29.26 ± 4.12 |
E2 (ng/mL) | 5.30 ± 4.50 | 9.08 ± 2.46 | 178 ± 35 | 228 ± 45 * |
T (ng/mL) | 62.24 ± 24.64 | 43.14 ±1 9.36 | 2.28 ± 0.92 | 2.22 ± 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Péter, G.; Lukić, J.; Milla, S.; Sándor, Z.J.; Brlás-Molnár, Z.; Ardó, L.; Bekefi, E.; Ljubobratović, U. Reproduction of Hatchery-Reared Pike-Perch (Sander lucioperca) Fed Diet with Low-Marine-Ingredients: Role of Dietary Fatty Acids. Fishes 2023, 8, 219. https://doi.org/10.3390/fishes8050219
Péter G, Lukić J, Milla S, Sándor ZJ, Brlás-Molnár Z, Ardó L, Bekefi E, Ljubobratović U. Reproduction of Hatchery-Reared Pike-Perch (Sander lucioperca) Fed Diet with Low-Marine-Ingredients: Role of Dietary Fatty Acids. Fishes. 2023; 8(5):219. https://doi.org/10.3390/fishes8050219
Chicago/Turabian StylePéter, Géza, Jovanka Lukić, Sylvain Milla, Zsuzsanna J. Sándor, Zsuzsanna Brlás-Molnár, László Ardó, Emese Bekefi, and Uroš Ljubobratović. 2023. "Reproduction of Hatchery-Reared Pike-Perch (Sander lucioperca) Fed Diet with Low-Marine-Ingredients: Role of Dietary Fatty Acids" Fishes 8, no. 5: 219. https://doi.org/10.3390/fishes8050219
APA StylePéter, G., Lukić, J., Milla, S., Sándor, Z. J., Brlás-Molnár, Z., Ardó, L., Bekefi, E., & Ljubobratović, U. (2023). Reproduction of Hatchery-Reared Pike-Perch (Sander lucioperca) Fed Diet with Low-Marine-Ingredients: Role of Dietary Fatty Acids. Fishes, 8(5), 219. https://doi.org/10.3390/fishes8050219