Evaluation of Technical Efficiency in Exotic Carp Polyculture in Northern India: Conventional DEA vs. Bootstrapping Methods
Abstract
:1. Introduction
2. Review of Literature
3. Materials and Methods
3.1. Research Flow
- Step 1: Data collection from sample farmers.
- Step 2: Selecting input and output variables.
- Step 3: Applying the Pearson correlation test.
- Step 4: Applying the DEA model.
- Step 5: Performing bootstrapping.
- Step 6: Analyzing the results.
- Step 7: Discussion and conclusion.
3.2. Pearson’s Correlation Coefficient
3.3. Data Description and Sampling Procedure
3.4. Analytical Technique
Subject to:
U, Y, /V, X, = 1, I = 1, 2, 3 … N (U and V are variable weights)
U, V = 0
Subject to
−Y + Yλ ≥ 0
θ = free, λ ≥ 0
Subject to:
−Yi + Yλ ≥ 0
N 1′ λ −1
λ ≥ 0
3.5. The Bootstrap Proposed by Simar and Wilson
- Step 1: Compute the estimate of technical efficiency, the jth farm as in Equation (1).
- Step 2: Use bootstrap via smooth sampling from …, to obtain a bootstrap replica: this is completed as follows:
- Step 3: For j = 1, N, a pseudo data set of ().where = xj and = yj. Calculate the new DEA score for each fish farm from Equation (1) by taking the pseudo data as reference.
- Step 4: Repeat steps (1) to (3) for B times to yield a new DEA technical efficiency score for j = 1, N, Therefore the bias corrected estimator of can be computed as = B−1 .
- Step 5: The confidence interval of a (1−a) level for the technical efficiency can be established by finding value aa, ba such that Pr (−aa ≤ ≤ −ba) = (1−a). Since we do not know the distribution of (, we can use the bootstrap values to find such that Pr (− ≤ ≤ ) = (1—a). Therefore, the estimated confidence level of (1 − a) for technical efficiency of the jth exotic farm is + ≤ θj ≤ + .
3.6. Tobit Regression Explaining Determinants of Efficiency
4. Results and Discussion
4.1. Socio-Economic Characteristics of Farmers
4.2. Fixed Capital Investment Pattern
4.3. Summary of Descriptive Statistics
4.4. Correlation Coefficient
4.5. Technical Efficiency Estimation
4.6. Allocative and Cost Efficiencies
4.7. Technical Inefficiency Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kobayashi, M.; Msangi, S.; Batka, M.; Vannuccini, S.; Dey, M.M.; Anderson, J.L. Fish to 2030: The role and opportunity for aquaculture. Aquac. Econ. Manag. 2015, 19, 282–300. [Google Scholar] [CrossRef] [Green Version]
- National Fisheries Development Board (NFDB). Available online: http://nfdb.gov.in/about-indian-fisheries (accessed on 15 March 2020).
- Penman, D.J.; Gupta, M.V.; Dey, M.M. Carp Genetic Resources for Aquaculture in Asia; WorldFish Center: Bayan Lepas, Malaysia, 2005; Volume 1727. [Google Scholar]
- Saini, V.P.; Ojha, M.L.; Gupta, M.C.; Nair, P.; Sharma, A.; Luhar, V. Effect of dietary probiotic on growth performance and disease resistance in Labeo rohita (Ham.) fingerlings. Int. J. Fish. Aquat. Stud. 2014, 1, 7–11. [Google Scholar]
- Government of Jammu & Kashmir (GoJ&K). Annual Report 2012–2013; Department of Fisheries: Srinagar, India, 2013.
- Nisar, U.; Kumar, N.R. Supply Chain Analysis of Farmed Exotic Carps in Jammu and Kashmir, India. Fish. Technol. 2018, 55, 218–225. [Google Scholar]
- Fare, R.; Grosskopf, S.; Lovell, C.A.K. Production Frontiers; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Badunenko, O.; Mozharovskyi, P. Nonparametric frontier analysis using Stata. Stata J. Promot. Commun. Stat. Stata 2016, 16, 550–589. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Evaluating Program and Efficiency an Application of DEA to program follows through. Manag. Sci. 1981, 27, 668–697. [Google Scholar] [CrossRef]
- Wang, C.N.; Nguyen, T.L.; Dang, T.T.; Bui, T.H. Performance Evaluation of Fishery Enterprises Using Data Envelopment Analysis—A Malmquist Model. Mathematics 2021, 9, 469. [Google Scholar] [CrossRef]
- Zhu, J. Multi-factor performance measure model with an application to Fortune 500 companies. Eur. J. Oper. Res. 2000, 123, 105–124. [Google Scholar] [CrossRef]
- Anh Ngoc, P.T.; Gaitán-Cremaschi, D.; Meuwissen, M.P.; Le, T.C.; Bosma, R.H.; Verreth, J.; Lansink, A.O. Technical inefficiency of Vietnamese pangasius farming: A data envelopment analysis. Aquac. Econ. Manag. 2018, 22, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Sangun, L.; Guney, O.I.N.; Berk, A. Economic efficiency performance of small-scale fisheries in the East Mediterranean coast of Turkey. New Medit. 2018, 17, 71–80. [Google Scholar] [CrossRef]
- Long, L.K.; Van Thap, L.; Hoai, N.T.; Pham, T.T.T. Data envelopment analysis for analyzing technical efficiency in aquaculture: The bootstrap methods. Aquac. Econ. Manag. 2020, 24, 422–446. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P. Statistical inference in nonparametric frontier models: The state of the art. J. Product. Anal. 2000, 13, 49–78. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Coelli, T.; Battese, G. Identification of factors which influence the technical inefficiency of Indian farmers. Aust. J. Agric. Resour. Econ. 1996, 40, 103–128. [Google Scholar] [CrossRef]
- Ferdous Alam, M.; Murshed-e-Jahan, K. Resource allocation efficiency of the prawn-carp farmers of Bangladesh. Aquac. Econ. Manag. 2008, 12, 188–206. [Google Scholar] [CrossRef]
- Nielsen, R. Green and technical efficient growth in Danish fresh water aquaculture. Aquac. Econ. Manag. 2011, 15, 262–277. [Google Scholar] [CrossRef]
- Au, H.T.N.; The, B.D.; Speelman, S. Analyzing the variations in cost-efficiency of marine cage lobster aquaculture in Vietnam: A two-stage bootstrap DEA approach. Aquac. Econ. Manag. 2018, 22, 458–473. [Google Scholar] [CrossRef]
- Kiet, N.T.; Fisher, T.C. Efficiency analysis and the effect of pollution in the Mekong river delta. Aquac. Econ. Manag. 2014, 18, 325–343. [Google Scholar] [CrossRef]
- Lam Anh, N.; Tung, P.B.; Bosma, R.; Verreth, J.; Leemans, R.; De Silva, S.; Lansink, A.O. Impact of climate change on the technical efficiency of striped catfish, Pangasianodon hypophthalmus, farming in the Mekong Delta, Vietnam. J. World Aquac. Soc. 2018, 49, 570–581. [Google Scholar] [CrossRef] [Green Version]
- Zongli, Z.; Yanan, Z.; Feifan, L.; Hui, Y.; Yongming, Y.; Xinhua, Y. Economic efficiency of small-scale tilapia farms in Guangxi, China. Aquac. Econ. Manag. 2017, 21, 283–294. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Non-parametric tests of returns to scale. Eur. J. Oper. Res. 2002, 139, 115–132. [Google Scholar] [CrossRef]
- Bogetoft, P.; Otto, L. Benchmarking with DEA, SFA, and R; Springer Science & Business Media: New York, NY, USA, 2010; Volume 157. [Google Scholar]
- Besstremyannaya, G. The impact of Japanese hospital financing reform on hospital efficiency: A difference-in-difference approach. Jpn. Econ. Rev. 2013, 64, 337–362. [Google Scholar] [CrossRef] [Green Version]
- Kirjavainen, T.; Loikkanent, A.H. Efficiency differences of finnish senior secondary schools: An application of DEA and Tobit analysis. Econ. Educ. Rev. 1998, 17, 377–394. [Google Scholar] [CrossRef] [Green Version]
- Banker, R.D.; Natarajan, R. Evaluating contextual variables affecting productivity using data envelopment analysis. Oper. Res. 2008, 56, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. B Ser. A 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Debreu, G. The coefficient of resource utilization. Econometrica 1951, 19, 273–292. [Google Scholar] [CrossRef]
- Battesse, G.E. Frontier production Functions and technical efficiency: A survey of empirical applications in agricultural economics. J. Agric. Econ. 1992, 7, 185–208. [Google Scholar] [CrossRef]
- Coelli, T.J. Recent Development in frontier modeling and efficiency Measurement. Aust. J. Agric. Resour. Econ. 1995, 3, 219–245. [Google Scholar] [CrossRef] [Green Version]
- Ajibefun, I.A. Efficiency of small-scale Food crop Farmers in Ondo State Nigeria. An Application of Parametric and Non-parametric frontier Production Functions. Ph.D. Thesis, Department of Agricultural Economics and Extension, Federal University of Technology (FUTA), Akure, Nigeria, 1998. [Google Scholar]
- Griffin, W.L.; Lambregts, J.A.; Yates, M.W.; Garcia, A. The impact of aquaculture pond engineering design on the returns to shrimp farms. J. World Aquac. Soc. 1993, 24, 23–30. [Google Scholar] [CrossRef]
- Jayaraman, R. Economics and technical efficiency in carp culture. In Proceedings of the 11th Annual Conference of the European Association of Fisheries Economists, Dublin, Ireland, 6–10 April 1999. [Google Scholar]
- Kopp, R.J.; Diewert, W.E. The decomposition of frontier cost function deviations into measures of technical and allocative efficiency. J. Econ. 1982, 19, 319–331. [Google Scholar] [CrossRef]
- Yusuf, S.A.; Malomo, O. Technical efficiency of poultry egg production in Ogun state: A data envelopment analysis (DEA) approach. Int. J. Poult. Sci. 2007, 6, 622–629. [Google Scholar] [CrossRef] [Green Version]
- Mohan Dey, M.; Javien Paraguas, F.; Srichantuk, N.; Xinhua, Y.; Bhatta, R.; Thi Chau Dung, L. Technical efficiency of freshwater pond polyculture production in selected Asian countries: Estimation and implication. Aquac. Econ. Manag. 2005, 9, 39–63. [Google Scholar] [CrossRef]
- Sharma, K.R.; Leung, P.; Chen, H.; Peterson, A. Economic efficiency and optimum stocking densities in fish polyculture: An application of data envelopment analysis (DEA) to Chinese fish farms. Aquaculture 1999, 180, 207–221. [Google Scholar] [CrossRef]
- Yin, X.; Wang, A.; Zhou, H.; Wang, Q.; Li, Z.; Shao, P. Economic efficiency of crucian carp (Carassius auratus gibelio) polyculture farmers in the coastal area of Yancheng city, China. Turk. J. Fish. Aquat. Sci. 2014, 14, 429–437. [Google Scholar] [CrossRef]
Jammu | Kashmir | ||||
---|---|---|---|---|---|
Category | No. | Share (%) | No. | Share (%) | |
Sample size | 80 | 80 | |||
Gender | Male | 72 | 90 | 66 | 82.5 |
Female | 8 | 10 | 14 | 17.5 | |
Age | <45 years | 30 | 37.5 | 48 | 60 |
46–55 years | 38 | 47.5 | 26 | 32.5 | |
≥56 years | 12 | 15 | 6 | 7.5 | |
Family Type | Joint | 50 | 62.5 | 32 | 40 |
Nuclear | 30 | 37.5 | 48 | 60 | |
Family Size | 2–4 members | 24 | 30 | 38 | 45 |
5–7 members | 22 | 27.5 | 26 | 32.5 | |
>7 members | 34 | 42.5 | 18 | 22.5 | |
Education Level | Illiterate | 2 | 2.5 | 6 | 7.5 |
Primary | 34 | 42.5 | 20 | 25 | |
Secondary | 30 | 37.5 | 36 | 40 | |
Higher secondary | 14 | 17.5 | 16 | 20 | |
Graduate | 0 | 0 | 4 | 5 | |
PG | 0 | 0 | 2 | 2.5 | |
Occupation | Agriculture | 60 | 75 | 66 | 82.5 |
Business | 6 | 7.5 | 6 | 7.5 | |
Govt. Job | 14 | 17.5 | 8 | 10 |
Particulars | Jammu | Kashmir | ||||
---|---|---|---|---|---|---|
Per Farm | Per Hectare | Share (%) | Per Farm | Per Hectare | Share (%) | |
Pond construction | USD 670.60 | USD 6773.41 | 50.66 | USD 1316.93 | USD 13,302.95 | 61.10 |
Inlet/outlet | USD 94.45 | USD 953.94 | 7.13 | USD 182.86 | USD 1846.88 | 8.48 |
Farm building | USD 96.92 | USD 979.16 | 7.32 | USD 149.69 | USD 1511.86 | 6.94 |
Power connection and lighting | USD 62.10 | USD 626.87 | 4.69 | USD 40.71 | USD 411.51 | 1.89 |
Nets | USD 210.01 | USD 2121.73 | 15.87 | USD 267.85 | USD 2705.96 | 12.43 |
Electric motor | USD 189.58 | USD 1915.15 | 14.32 | USD 197.40 | USD 1993.83 | 9.16 |
Total | USD 1323.65 | USD 13,370.25 | 100.00 | USD 2155.59 | USD 21,772.45 | 100.00 |
Jammu | Kashmir | ||||||||
---|---|---|---|---|---|---|---|---|---|
Output/Input Variables | Min | Max | Mean | St. dev | Min | Max | Mean | St. dev | |
Output | |||||||||
Fish yield (q/ha) * | 119.60 | 174.75 | 133.74 | 16.57 | 82.63 | 137.78 | 109.91 | 9.49 | |
Inputs | |||||||||
Rice bran (q/ha) * | 63.26 | 108.72 | 75.53 | 13.94 | 60.29 | 128.49 | 70.62 | 12.48 | |
Mustard oil cake (MOC) (q/ha) * | 42.90 | 117.82 | 73.14 | 16.43 | 61.28 | 97.85 | 70.81 | 10.32 | |
Lime (q/ha) * | 1.58 | 8.90 | 6.11 | 2.05 | 2.09 | 10.23 | 5.77 | 1.89 | |
Seed stocked (No./Ha) | 19,372.64 | 52,385.20 | 37,687.69 | 10,118.49 | 18,186.56 | 39,536.00 | 20,852.83 | 3249.45 | |
Labor (days/ha) | 138.38 | 494.20 | 212.66 | 77.70 | 98.84 | 336.06 | 167.79 | 46.17 |
Jammu | Kashmir | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RB | MOC | Lime | Lab | Seed | Output | RB | MOC | Lime | Lab | Seed | Output | ||
RB | Pearson Correlation | 1 | 0.981 ** | 0.469 ** | 0.520 ** | 0.707 ** | 0.368 * | 1 | 0.981 ** | 0.469 ** | 0.520 ** | 0.707 ** | 0.368 * |
p-value | 0.000 | 0.002 | 0.001 | 0.000 | 0.020 | 0.000 | 0.002 | 0.001 | 0.000 | 0.020 | |||
Sample size | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | |
MOC | Pearson Correlation | 0.981 ** | 1 | 0.470 ** | 0.532 ** | 0.702 ** | 0.278 * | 0.981 ** | 1 | 0.470 ** | 0.532 ** | 0.702 ** | 0.277 * |
p-value | 0.000 | 0.002 | 0.000 | 0.000 | 0.013 | 0.000 | 0.002 | 0.000 | 0.000 | 0.017 | |||
N | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | |
lime | Pearson Correlation | 0.469 ** | 0.470 ** | 1 | 0.217 ** | 0.283 * | 0.188 * | 0.80 ** | 0.470 ** | 1 | 0.216 * | 0.283 * | 0.188 * |
p-value | 0.002 | 0.002 | 0.001 | 0.026 | 0.044 | 0.002 | 0.002 | 0.017 | 0.016 | 0.244 | |||
N | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | |
lab | Pearson Correlation | 0.520 ** | 0.532 ** | 0.217 * | 1 | 0.430 ** | 0.320 * | 0.520 ** | 0.532 ** | 0.216 * | 1 | 0.430 ** | 0.320 * |
p-value | 0.001 | 0.000 | 0.013 | 0.006 | 0.044 | 0.001 | 0.000 | 0.017 | 0.006 | 0.044 | |||
N | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | |
seed | Pearson Correlation | 0.707 ** | 0.702 ** | 0.283 * | 0.430 ** | 1 | 0.364 * | 0.707 ** | 0.702 ** | 0.283 * | 0.430 ** | 1 | 0.364 * |
p-value | 0.000 | 0.000 | 0.016 | 0.006 | 0.021 | 0.000 | 0.000 | 0.025 | 0.006 | 0.021 | |||
N | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | |
output | Pearson Correlation | 0.368 * | 0.278 * | 0.188 * | 0.320 * | 0.364 * | 1 | 0.368 * | 0.277 * | 0.188 * | 0.320 * | 0.364 * | 1 |
p-value | 0.020 | 0.033 | 0.024 | 0.044 | 0.021 | 0.020 | 0.025 | 0.014 | 0.044 | 0.021 | |||
N | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
Jammu | Kashmir | |||||||
---|---|---|---|---|---|---|---|---|
Min | Maximum | Mean | SD | Min | Maximum | Mean | SD | |
Conventional TE | 0.8129 | 1 | 0.9771 | 0.0706 | 0.8012 | 1 | 0.9741 | 0.0519 |
Bootstrap-corrected TE | 0.6667 | 1 | 0.9744 | 0.0706 | 0.7286 | 1 | 0.9727 | 0.0517 |
Higher bound single | 0.813 | 1.18 | 0.9771 | 0.0708 | 0.8012 | 1.27 | 0.9735 | 0.0525 |
Lower bound single | 0.6895 | 0.967 | 0.9728 | 0.0707 | 0.7317 | 0.993 | 0.9213 | 0.0523 |
Jammu | Kashmir | |||||||
---|---|---|---|---|---|---|---|---|
Allocative Efficiency | Cost Efficiency | Allocative Efficiency | Cost Efficiency | |||||
Efficiency level | Freq. | % | Freq. | % | Freq. | % | Freq. | % |
0.501–0.6 | 0 | 0 | 8 | 10 | 0 | 0 | 4 | 5 |
0.601–0.7 | 0 | 0 | 16 | 20 | 0 | 0 | 16 | 20 |
0.701–0.8 | 8 | 10 | 24 | 30 | 24 | 30 | 44 | 55 |
0.801–0.9 | 20 | 25 | 18 | 22.5 | 32 | 40 | 10 | 12.5 |
0.901–1.00 | 52 | 65 | 14 | 17.5 | 24 | 30 | 6 | 7.5 |
Total | 80 | 100 | 80 | 100 | 80 | 100 | 80 | 100 |
Mean efficiency | 0.92 | 0.75 | 0.84 | 0.74 | ||||
Median | 0.94 | 0.72 | 0.83 | 0.73 | ||||
Mode | 0.969 | 1 | 0.74 | 0.63 | ||||
Minimum | 0.716 | 0.475 | 0.73 | 0.57 | ||||
Maximum | 1 | 1 | 1 | 1 | ||||
Std. Deviation | 0.067 | - | 0.071 | 0.088 |
Jammu | Kashmir | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Technical Efficiency | Allocative Efficiency | Cost Efficiency | Technical Efficiency | Allocative Efficiency | Cost Efficiency | |||||||
Coeff | t-Ratio | Coeff | t-Ratio | Coeff | t-Ratio | Coeff | t-Ratio | Coeff | t-Ratio | Coeff | t-Ratio | |
Constant | 0.529 | 4.720 * | 0.909 | 9.500 * | 0.479 | 3.910 * | 0.871 | 11.260 | 0.880 | 8.170 * | 0.774 | 7.050 ** |
Education | 0.008 | 1.480 ** | 0.004 | 0.810 | 0.010 | 1.760 ** | 0.002 | 0.540 * | 0.002 | 0.430 | 0.003 | 0.710 |
Experience | 0.010 | 1.720 | 0.002 | 0.430 * | 0.012 | 1.850 ** | 0.005 | 1.660 * | −0.004 | −1.100 | 0.000 | −0.010 |
Age | 0.005 | 2.430 * | −0.001 | −0.640 | 0.003 | 1.530 * | 0.002 | 1.670 | 0.000 | −0.080 | 0.001 | 0.850 |
Family number | −0.014 | −1.580 * | 0.001 | 0.090* | −0.012 | −1.250 | −0.018 | −4.320 | −0.005 | −0.900 | −0.020 | −3.430 ** |
Log likelihood | 44.20 | 50.32 | 40.67 | 63.63 | 50.37 | 49.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Nisar, U.; Mu, Y. Evaluation of Technical Efficiency in Exotic Carp Polyculture in Northern India: Conventional DEA vs. Bootstrapping Methods. Fishes 2022, 7, 168. https://doi.org/10.3390/fishes7040168
Zhang H, Nisar U, Mu Y. Evaluation of Technical Efficiency in Exotic Carp Polyculture in Northern India: Conventional DEA vs. Bootstrapping Methods. Fishes. 2022; 7(4):168. https://doi.org/10.3390/fishes7040168
Chicago/Turabian StyleZhang, Hongzhi, Ubair Nisar, and Yongtong Mu. 2022. "Evaluation of Technical Efficiency in Exotic Carp Polyculture in Northern India: Conventional DEA vs. Bootstrapping Methods" Fishes 7, no. 4: 168. https://doi.org/10.3390/fishes7040168
APA StyleZhang, H., Nisar, U., & Mu, Y. (2022). Evaluation of Technical Efficiency in Exotic Carp Polyculture in Northern India: Conventional DEA vs. Bootstrapping Methods. Fishes, 7(4), 168. https://doi.org/10.3390/fishes7040168