Investment Feasibility Analysis of Large Submersible Cage Culture in Taiwan: A Case Study of Snubnose Pompano (Trachinotus anak) and Cobia (Rachycentron canadum)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study
2.2. Offshore Cage Aquaculture Facility
2.3. Cost–Benefit Analysis
2.4. Operational Scale of Cage Culture
2.5. Analysis of Key Variables Affecting Offshore Cage Aquaculture Profitability
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Miao, S.; Tang, H.C. Bioeconomic analysis of improving management productivity regarding grouper Epinephelus malabaricus farming in Taiwan. Aquaculture 2002, 211, 151–169. [Google Scholar] [CrossRef]
- Jiang, B.; Guo, Q.K.; Li, Z.C.; Guo, Y.X.; Su, Y.L.; Li, W.; Liu, C.; Li, A.X. Biofouling of nets is a primary source of cryptocaryoniasis outbreaks in cage cultures. Aquaculture 2022, 550, 737892. [Google Scholar] [CrossRef]
- Fisheries Agency Fisheries. Statistical Yearbook-2020; Fisheries Agency Fisheries Council of Agriculture: Taipei, Taiwan, 2020.
- Huguenin, J.E. The design, operations and economics of cage culture system. Aquac. Eng. 1997, 16, 167–203. [Google Scholar] [CrossRef]
- Stickney, R.R. Impact of cage and net-pen culture on water quality and benthic communities. In Tomasco; Aquaculture and The Environment in the United States; Tomasso, J.R., Ed.; US Aquaculture Society: St Amant, LA, USA, 2002; pp. 105–118. [Google Scholar]
- Sarkar, U.K.; Mishal, P.; Borah, S.; Karnatak, G.; Chandra, G.; Kumari, S.; Das, B.K. Status, potential, prospects and issues of floodplain wetland fisheries in India: Synthesis and review for sustainable management. Rev. Fish. Sci. Aquac. 2021, 29, 1–32. [Google Scholar] [CrossRef]
- Mrityunjoy, K.; Debasish, P.; Ahmed, H.R. Optimization of stocking density for mono-sex Nile tilapia (Oreochromis niloticus) production in riverine cage culture in Bangladesh. Heliyon 2021, 7, e08334. [Google Scholar]
- Shainee, M.; Ellingsen, H.; Leira, B.J.; Fredheim, A. Design theory in offshore fish cage designing. Aquaculture 2013, 392, 134–141. [Google Scholar] [CrossRef]
- Noroi, G.; Glud, R.N.; Gaard, E.; Simonsen, K. Environmental impacts of coastal fish farming: Carbon and nitrogen budgets for trout farming in Kaldbaksfjøurdur (Faroe Island). Mar. Ecol. 2011, 431, 223–241. [Google Scholar]
- Kapetsky, J.; Aguiler-Manjarrez, J.; Jenness, J. A global assessment of offshore mariculture potential from a spatial perspective. In FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2013. [Google Scholar]
- Kankainen, M.; Mikalsen, R. Offshore Fish Farm Investment and Competitiveness in the Baltic Sea; Aquabest Project 2; Finnish Game and Fisheries Research Institute: Helsinki, Finland, 2014. [Google Scholar]
- Bjelland, H.V.; Fore, M.; Lader, P.; Kristiansen, D.; Holmen, I.M.; Fredheim, A.; Grotli, E.I.; Fathi, D.E.; Oppedal, F.; Utne, I.B.; et al. Exposen aquaculture in Norway. In MTS/IEEE Washington; Insitute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2015. [Google Scholar]
- Holm, P.; Buck, B.H.; Langan, R. Introduction: New Approachs to Sustainable Offshore Food Production and the Development of Offshore Platforms. Aquaculture Perspective and Multi-Use Sites in the Open Ocean; Springer: Cham, Switzerland, 2017; pp. 1–20. [Google Scholar]
- Klinger, D.; Naylor, R. Searching for solutions in aquaculture: Charting a sustainable course. Annu. Rev. Environ. Resour. 2012, 37, 247–276. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.A.; Roy, N.C.; Chowdhury, A. Growth, yield and economic returns of striped catfish (Pangasianodon hypophthalmus) at different stocking densities under floodplain cage culture system. Egypt. J. Aquat. Res. 2020, 46, 91–95. [Google Scholar] [CrossRef]
- Weaver, T. Financial appraisal of operational offshore wind energy projects. Renew. Sustain. Energy 2012, 16, 5110–5120. [Google Scholar] [CrossRef]
- Huang, C.T.; Afero, F.; Hung, C.W.; Chen, B.Y.; Nan, F.H.; Chiang, W.S.; Tang, H.J.; Kang, C.K. Economic feasibility assessment of cage aquaculture in offshore wind power generation areas in Changhua County, Taiwan. Aquaculture 2022, 548, 737611. [Google Scholar] [CrossRef]
- Lipton, W.L.; Kim, D.H. Assessing the economic viability of offshore aquaculture in Korea: An evaluation based on rock bream, oplegnathus fasciatus, production. World Aquac. Soc. 2007, 38, 506–515. [Google Scholar] [CrossRef]
- Nguyen, P.V.; Huang, C.T.; Hsiao, Y.J.; Truong, K.H. Data envelopment analysis for production efficiency improvement: An empirical application on Brine shrimp Artemia franciscana culture in the Mekong Delta, Vietnam. Aquac. Res. 2020, 51, 2985–2996. [Google Scholar]
- Iliyasu, A.; Mohamed, Z.A. Evaluating contextual factors affecting the technical efficiency of freshwater pond culture systems in Peninsular Malaysia: A two-stage DEA approach. Aquac. Rep. 2016, 3, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.T.; Nguyen, P.V.; Chen, Y.T.; Liang, T.T.; Nan, F.H.; Liu, P.C. Improving productivity management of commercial abalone Haliotis diversicolor supertexta and Haliotis discus hannai aquaculture in Taiwan: A bioeconomic analysis. Aquaculture 2019, 512, 734323. [Google Scholar] [CrossRef]
- Nogueira, M.C.F.; Henriques, M.B. Large-scale versus family-sized system production: Economic feasibility of cultivating Kappaphycus alvarezii along the southeastern coast of Brazil. J. Appl. Phycol. 2020, 32, 1893–1905. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D.D. Renewable energy integration/techno-economic feasibility analysis, cost/benefit impact on islanded and grid-connected operations: A case study. Renew. Energy 2021, 180, 83–108. [Google Scholar] [CrossRef]
- Castilho-Barrosa, L.; Owatari, M.S.; Mouriño, J.L.P.; Silva, B.C.; Seiffert, W.Q. Economic feasibility of tilapia culture in southern Brazil: A small-scale farm model. Aquaculture 2020, 515, 734551. [Google Scholar] [CrossRef]
- Bezerra, T.R.Q.; Ernesto, C.D.; Luiz, F.A.; Maia, F.; Artur, N.R.; Santiago, H.; Ronaldo, O.C. Economic analysis of cobia (Rachycentron canadum) cage culture in large-and small-scale production systems in Brazil. Aquac. Int. 2015, 24, 609–622. [Google Scholar] [CrossRef]
- Petersen, E.H.; Luan, T.D.; Chinh, D.T.M.; Tuan, V.A.; Binh, T.Q.; Truc, L.V.; Glenncros, B.D. Bioecomic of cobia, Rachycentron canadum, culture in Vietnam. Aquac. Econ.Manag. 2014, 18, 28–44. [Google Scholar] [CrossRef]
- Papageorgiou, N.; Kalantzi, I.; Karakassis, I. Effects of fish farming on the biological and geochemical properties of muddy and sandy sediments in the Mediterranean sea. Mar. Environ. 2010, 69, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Riera, R.; Pérez, Ó.; Cromey, C.; Rodríguez, M.; Ramos, E.; Alvarez, O.; Dominguez, J.; Monterroso, Ó.; Tuya, F. MACAROMOD: A tool to model particulate waste dispersion and benthic impact from offshore sea-cage aquaculture in the Macaronesian region. Ecol. Model. 2017, 361, 122–134. [Google Scholar] [CrossRef]
- Zhang, J.H.; Hansen, P.K.; Fang, J.G.; Wang, W.; Jiang, Z.J. Assessment of the local environmental impact of intensive marine shellfish and seaweed farming—Application of the MOM system in the Sungo Bay, China. Aquaculture 2009, 287, 304–310. [Google Scholar] [CrossRef]
- Holmer, M. Environmental issues of fish farming in offshore waters: Perspectives, concerns and research needs. Aquac. Environ. Interact. 2010, 1, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.X.; Zhang, J.H.; Liu, Y.; Sun, K.; Zhang, C.; Wu, W.G.; Teng, F. Numerical assessment of the environmental impacts of deep sea cage culture in the Yellow Sea, China. Sci. Total Environ. 2020, 706, 135752. [Google Scholar] [CrossRef]
- Riera, R.; Monterroso, Ó.; Rodríguez, M.; Ramos, E. Biotic indexes reveal the impact of harbour enlargement on benthic fauna. Chem. Ecol. 2011, 27, 311–326. [Google Scholar] [CrossRef]
- Riera, R.; Pérez, Ó.; Rodríguez, M.; Ramos, E.; Monterroso, Ó.; Sacramento, A. Are assemblages of the fireworm Hermodice carunculata enhanced in sediments beneath offshore fish cages? Acta Oceanol. Sin. 2014, 33, 108–111. [Google Scholar] [CrossRef]
- Cai, H.; Sun, Y. Management of marine cage aquaculture environmental carrying capacity method based on dry feed conversion rate. Environ. Sci. Pollut. Res. 2007, 14, 463–469. [Google Scholar]
- Cromey, C.J.; Nickell, T.D.; Treasurer, J.; Black, K.D.; Inall, M. Modelling the impact of cod (Gadusmorhua L.) farming in the marine environment–CODMOD. Aquaculture 2009, 289, 42–53. [Google Scholar] [CrossRef]
- Cromey, C.J.; Thetmeyer, H.; Lampadariou, N.; Black, K.D.; Kögeler, J.; Karakassis, I. MERAMOD: Predicting the deposition and benthic impact of aquaculture in the eastern Mediterranean sea. Aquac. Environ. Interact. 2012, 2, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Ross, L.G.; Telfer, T.C.; Wu, C.; Zhu, A.; Zhao, S.; Xu, M. Modelling the nitrogen loadings from large yellow croaker (Larimichthyscrocea) cage aquaculture. Environ. Sci. Pollut. Res. 2016, 23, 7529–7542. [Google Scholar] [CrossRef] [PubMed]
- Halwart, M.; Soto, D.; Arthur, J.R. (Eds.) Cage Aquaculture Regional Reviews and Global Overview; Food and Agriculture Organization (FAO): Rome, Italy, 2007; Volume 498, pp. 42–45. [Google Scholar]
Variable | Specification |
---|---|
Circular diameter of inner pipe | 31.5 m |
Net depth | 15 m |
Circular perimeter of inner pipe | 102 m |
1 cage volume | 12,058 m3 |
4 cages volume | 48,230 m3 |
Deformation rate | 20% |
Actual volume (4 cages) | 38,584 m3 |
Cage system | Cost (thousand NTD) |
Anchor | 6000 |
Cage frame | 3500 |
Cage netting | 7000 |
Net cover | 1500 |
Total | 18,000 |
Production Cost (Thousand NTD) | Snubnose Pompano (Trachinotus anak) | % | Cobia (Rachycentron canadum) | % |
---|---|---|---|---|
Depreciation | ||||
Cage system equipment | 7200 | 7200 | ||
Automation equipment | 3555 | 3555 | ||
Workshop and boat | 5200 | 5200 | ||
Fry | 38,584 | 26.7 | 19,292 | 15.0 |
Feed | 95,496 | 66.1 | 99,316 | 77.0 |
Labor | 3120 | 2.2 | 3120 | 2.4 |
Power | 600 | 0.4 | 600 | 0.5 |
Fuel | 3600 | 2.5 | 3600 | 2.8 |
Other | 3000 | 2.1 | 3000 | 2.3 |
Total | 149,600 | 134,128 | ||
Profit | ||||
Gross Revenue | 169,771 | 162,825 | ||
Net Revenue | 20,171 | 33,897 | ||
Profitability Measure | ||||
Gross margin (%) | 14.94 | 20.82 | ||
Benefit–cost ratio | 1.18 | 1.26 | ||
Profitability index | 0.98 | 1.31 | ||
Net present value | −56,696 | −22,126 | ||
IRR (%) | −0.49 | 6.11 | ||
Payback period (year) | 10.04 | 6.69 |
Item | Quantity | Price (Thousand NTD) | Remark |
---|---|---|---|
Cages | 4 | 72,000 | 4 cages + mooring system |
Bait boat | 1 | 20,000 | with crane |
Automatic washing machine | 1 | 7500 | |
Automatic fish suction machine | 1 | 4350 | Fish-containing water separation and counting system |
Instant fixed underwater lens | 1 | 930 | |
Instant mobile underwater camera (ROV) | 1 | 970 | |
Real-time underwater sonar detection system | 1 | 300 | |
Real-time water quality environmental monitoring module | 1 | 800 | |
Power Communication System | 1 | 700 | |
CT-3Work boat | 2 | 24,000 | including crane and live fish cabin |
Large rubber raft work boat | 1 | 10,000 | |
Unpowered offshore platform | 1 | 1500 | |
Repair base | 1 | 10,000 | |
Primary processing refrigeration equipment | 1 | 1500 | |
Transportation and heavy machinery equipment | 1 | 5000 | |
Total | 159,550 |
Variable | Snubnose Pompano (Trachinotus anak) | Cobia (Rachycentron canadum) |
---|---|---|
Stocking density (fish/m3) | 50 | 10 |
Total stocking | 1,929,216 | 385,843 |
Fry size (gram/fish) | 30 | 200 |
Fry Price (NTD/fish) | 20 | 50 |
Harvest size (kg/fish) | 0.6 | 5 |
FCR | 2.0 | 2.6 |
Survival rate (%) | 80 | 30 |
Grow out (kg/m3) | 21 | 15 |
Farming cycle | 12 | 12 |
Production (kg) | 810,270.7 | 578,765 |
Feed price (kg) | 55 | 55 |
Variable | 8 Cages | % | 12 Cages | % | 16 Cages | % | 20 Cages | % | 24 Cages | % | |
---|---|---|---|---|---|---|---|---|---|---|---|
Snubnose pompano | Initial investment | 231,550 | 303,550 | 395,550 | 467,550 | 539,550 | |||||
Production cost | |||||||||||
Fry | 77,168 | 27.4 | 115,752 | 27.6 | 154,337 | 27.8 | 192,921 | 27.8 | 231,505 | 27.9 | |
Feed | 190,992 | 67.8 | 286,488 | 68.4 | 381,984 | 68.7 | 477,480 | 68.9 | 572,977 | 69.0 | |
Labor | 4160 | 1.5 | 5200 | 1.2 | 6240 | 1.1 | 7280 | 1.1 | 8320 | 1.0 | |
Power | 630 | 0.2 | 660 | 0.2 | 690 | 0.1 | 720 | 0.1 | 750 | 0.1 | |
Fuel | 4680 | 1.7 | 5760 | 1.4 | 6840 | 1.2 | 7920 | 1.1 | 9000 | 1.1 | |
Other | 3900 | 1.4 | 4800 | 1.1 | 5700 | 1.0 | 6600 | 1.0 | 7500 | 0.9 | |
Gross revenue | 339,542 | 509,313 | 679,084 | 848,855 | 1,018,626 | ||||||
Cobia | Initial investment | 231,550 | 303,550 | 395,550 | 467,550 | 539,550 | |||||
Production cost | |||||||||||
Fry | 38,584 | 15.4 | 57,876 | 15.5 | 77,168 | 15.6 | 96,460 | 15.7 | 115,752 | 15.7 | |
Feed | 198,632 | 79.3 | 297,948 | 80.0 | 397,264 | 80.4 | 496,580 | 80.7 | 595,896 | 80.8 | |
Labor | 4160 | 1.7 | 5200 | 1.4 | 6240 | 1.3 | 7280 | 1.2 | 8320 | 1.1 | |
Power | 630 | 0.3 | 660 | 0.2 | 690 | 0.1 | 720 | 0.1 | 750 | 0.1 | |
Fuel | 4680 | 1.9 | 5760 | 1.5 | 6840 | 1.4 | 7920 | 1.3 | 9000 | 1.2 | |
Other | 3900 | 1.6 | 4800 | 1.3 | 5700 | 1.2 | 6600 | 1.1 | 7500 | 1.0 | |
Gross revenue | 325,651 | 488,477 | 493,902 | 615,560 | 976,954 |
Species | Profitability Measure | 4 Cages | 8 Cages | 12 Cages | 16 Cages | 20 Cages | 24 Cages |
---|---|---|---|---|---|---|---|
Snubnose Pompano | Gross margin (%) | 14.94 | 17.09 | 17.8 | 18.16 | 18.37 | 18.51 |
Benefit–cost ratio | 1.18 | 1.21 | 1.22 | 1.22 | 1.23 | 1.23 | |
Profitability index | 0.98 | 1.54 | 1.83 | 1.92 | 2.05 | 2.15 | |
Net present value * | −56,696 | 3631 | 63,958 | 104,285 | 164,612 | 224,940 | |
IRR (%) | −0.49 | 10.43 | 15.6 | 16.97 | 19.21 | 20.84 | |
Payback period (year) | 10.04 | 5.36 | 4.29 | 4.06 | 3.75 | 3.55 | |
Cobia | Gross margin (%) | 20.82 | 23.05 | 23.79 | 24.17 | 24.39 | 24.54 |
Benefit–cost ratio | 1.26 | 1.3 | 1.31 | 1.32 | 1.32 | 1.33 | |
Profitability index | 1.31 | 1.99 | 2.35 | 2.45 | 2.61 | 2.73 | |
Net present value * | −22,126 | 72,770 | 167,667 | 242,563 | 337,460 | 432,357 | |
IRR (%) | 6.11 | 18.26 | 24.18 | 25.66 | 28.29 | 30.19 | |
Payback period (year) | 6.69 | 3.88 | 3.18 | 3.04 | 2.82 | 2.69 |
16 Cages | 24 Cages | ||||||||||||
Species | Price NTD | Survival Rate | Survival Rate | ||||||||||
70% | 80% | 90% | 70% | 80% | 90% | ||||||||
Snubnose Pompano | 181 | 1.26 a | 7.03 b | 1.78 | 4.44 | 2.27 | 2.24 | 1.38 | 6.08 | 1.96 | 3.94 | 2.49 | 3.04 |
−67,060,529 c | 5% d | 69,967,352 | 15% | 195,732,120 | 23% | −46,814,900 | 7.59% | 158,726,028 | 17.75% | 347,373,181 | 26.41% | ||
191 | 1.77 | 4.47 | 2.36 | 3.18 | 2.94 | 2.47 | 1.95 | 3.97 | 2.59 | 2.83 | 3.23 | 2.22 | |
67,369,289 | 15% | 219,413,262 | 24% | 371,457,236 | 33% | 154,828,933 | 17.56% | 382,894,894 | 27.99 | 610,960,854 | 37.99% | ||
201 | 2.28 | 3.31 | 2.93 | 2.48 | 3.59 | 1.97 | 2.50 | 2.95 | 3.22 | 2.33 | 3.94 | 1.79 | |
198,765,315 | 23% | 369,580,150 | 33% | 540,394,985 | 43% | 351,922,973 | 26.61% | 608,145,225 | 37.87% | 864,367,477 | 48.84% | ||
211 | 2.78 | 2.63 | 3.51 | 2.02 | 4.23 | 1.66 | 3.06 | 2.63 | 3.86 | 1.81 | 4.66 | 1.50 | |
330,161,342 | 31% | 519,747,038 | 42% | 709,332,734 | 53% | 549,017,013 | 35.30% | 833,395,557 | 47.52% | 1,117,774,101 | 59.54% | ||
16 Cages | 24 Cages | ||||||||||||
Species | Price NTD | Survival Rate | Survival Rate | ||||||||||
30% | 40% | 50% | 30% | 40% | 50% | ||||||||
Cobia | 201 | 1.27 | 6.94 | 1.97 | 3.94 | 2.66 | 2.76 | 1.40 | 6.08 | 2.16 | 3.52 | 2.93 | 2.49 |
−64,026,738 | 5.44% | 117,424,918 | 17.81% | 298,876,574 | 29.10% | −42,265,150 | 7.83% | 229,912,310 | 21.07% | 502,089,771 | 33.25% | ||
211 | 1.63 | 4.97 | 2.45 | 3.04 | 3.26 | 2.20 | 1.79 | 4.42 | 2.69 | 2.7 | 3.59 | 1.97 | |
29,827,567 | 12.04% | 242,563,991 | 25.66% | 455,300,415 | 38.42% | 98,516,295 | 14.87% | 417,620,904 | 29.54% | 736,725,513 | 43.40% | ||
221 | 1.99 | 3.88 | 2.92 | 2.49 | 3.86 | 1.83 | 2.19 | 3.47 | 3.22 | 2.23 | 4.24 | 1.65 | |
123,681,872 | 18.22% | 367,703,064 | 33.23% | 611,724,257 | 47.56% | 239,297,740 | 21.50% | 605,329,497 | 37.75% | 971,361,254 | 53.37% | ||
231 | 2.35 | 3.19 | 3.40 | 2.09 | 4.46 | 1.57 | 2.58 | 2.84 | 3.74 | 1.87 | 4.9 | 1.42 | |
217,536,176 | 24.12% | 492,842,137 | 40.63% | 768,148,098 | 56.59% | 380,079,185 | 27.87% | 793,038,091 | 45.80% | 1,205,996,996 | 63.25% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, H.-Y.; Afero, F.; Huang, C.-T.; Chen, B.-Y.; Huang, P.-L.; Hou, Y.-L. Investment Feasibility Analysis of Large Submersible Cage Culture in Taiwan: A Case Study of Snubnose Pompano (Trachinotus anak) and Cobia (Rachycentron canadum). Fishes 2022, 7, 151. https://doi.org/10.3390/fishes7040151
Lan H-Y, Afero F, Huang C-T, Chen B-Y, Huang P-L, Hou Y-L. Investment Feasibility Analysis of Large Submersible Cage Culture in Taiwan: A Case Study of Snubnose Pompano (Trachinotus anak) and Cobia (Rachycentron canadum). Fishes. 2022; 7(4):151. https://doi.org/10.3390/fishes7040151
Chicago/Turabian StyleLan, Hsun-Yu, Farok Afero, Cheng-Ting Huang, Bo-Ying Chen, Po-Lin Huang, and Yen-Lung Hou. 2022. "Investment Feasibility Analysis of Large Submersible Cage Culture in Taiwan: A Case Study of Snubnose Pompano (Trachinotus anak) and Cobia (Rachycentron canadum)" Fishes 7, no. 4: 151. https://doi.org/10.3390/fishes7040151
APA StyleLan, H. -Y., Afero, F., Huang, C. -T., Chen, B. -Y., Huang, P. -L., & Hou, Y. -L. (2022). Investment Feasibility Analysis of Large Submersible Cage Culture in Taiwan: A Case Study of Snubnose Pompano (Trachinotus anak) and Cobia (Rachycentron canadum). Fishes, 7(4), 151. https://doi.org/10.3390/fishes7040151