Wound-Induced Changes in Antioxidant Enzyme Activities in Skin Mucus and in Gene Expression in the Skin of Gilthead Seabream (Sparus aurata L.)
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Enzyme Activity in Skin Mucus
2.2. Gene Expression in the Skin
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Experimental Design and Sampling
4.3. Antioxidant Enzyme Determination in Skin Mucus
4.4. Quantitative Real-Time PCR
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cordero, H.; Ceballos-Francisco, D.; Cuesta, A.; Esteban, M.Á. Dorso-ventral skin characterization of the farmed fish gilthead seabream (Sparus aurata). PLoS ONE 2017, 12, e0180438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, F.A.; Gregório, S.F.; Ferraresso, S.; Thorne, M.A.; Costa, R.; Milan, M.; Bargelloni, L.; Clark, M.S.; Canario, A.V.; Power, D.M. Skin healing and scale regeneration in fed and unfed sea bream, Sparus auratus. BMC Genom. 2011, 12, 490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iger, Y.; Abraham, M. The process of skin healing in experimentally wounded carp. J. Fish Biol. 1990, 36, 421–437. [Google Scholar] [CrossRef]
- Quilhac, A.; Sire, J.-Y.Y. Spreading, proliferation, and differentiation of the epidermis after wounding a cichlid fish, Hemichromis bimaculatus. Anat. Rec. 1999, 254, 435–451. [Google Scholar] [CrossRef]
- Jurado, J.; Fuentes-Almagro, C.A.; Guardiola, F.A.; Cuesta, A.; Esteban, M.Á.; Prieto-Álamo, M.J. Proteomic profile of the skin mucus of farmed gilthead seabream (Sparus aurata). J. Proteom. 2015, 120, 21–34. [Google Scholar] [CrossRef]
- Esteban, M.Á.; Cerezuela, R. Fish mucosal immunity: Skin. In Mucosal Health in Aquaculture; Academic Press: Cambridge, MA, USA, 2015; pp. 67–92. [Google Scholar] [CrossRef]
- Cerezuela, R.; Guardiola, F.A.; Meseguer, J.; Esteban, M.Á. Increases in immune parameters by inulin and Bacillus subtilis dietary administration to gilthead seabream (Sparus aurata L.) did not correlate with disease resistance to Photobacterium damselae. Fish Shellfish Immunol. 2012, 32, 1032–1040. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Cuesta, A.; Arizcun, M.; Meseguer, J.; Esteban, M.A. Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (Sparus aurata). Fish Shellfish Immunol. 2014, 36, 545–551. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Cuesta, A.; Abellán, E.; Meseguer, J.; Esteban, M.A. Comparative analysis of the humoral immunity of skin mucus from several marine teleost fish. Fish Shellfish Immunol. 2014, 40, 24–31. [Google Scholar] [CrossRef]
- Sanahuja, I.; Fernández-Alacid, L.; Sánchez-Nuño, S.; Ordóñez-Grande, B.; Ibarz, A. Chronic cold stress alters the skin mucus interactome in a temperate fish model. Front. Physiol. 2019, 9, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Guardiola, F.A.; Cuesta, A.; Esteban, M.Á. Using skin mucus to evaluate stress in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2016, 59, 323–330. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Logothetis, P.; Meseguer, J.; Esteban, M.A. Evaluation of silver nanospheres on viability and innate cellular parameters of gilthead seabream (Sparus aurata L.) head-kidney leucocytes. Fish Shellfish Immunol. 2017, 69, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Piazzon, M.C.; Calduch-Giner, J.A.; Fouz, B.; Estensoro, I.; Simó-Mirabet, P.; Puyalto, M.; Karalazos, V.; Palenzuela, O.; Sitjà-Bobadilla, A.; Pérez-Sánchez, J. Under control: How a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome 2017, 5, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Ibarz, A.; Pinto, P.I.S.; Power, D.M. Proteomic Approach to Skin Regeneration in a Marine Teleost: Modulation by Oestradiol-17β. Mar. Biotechnol. 2013, 15, 629–646. [Google Scholar] [CrossRef]
- Ordóñez-Grande, B.; Fernández-Alacid, L.; Sanahuja, I.; Sánchez-Nuño, S.; Fernández-Borràs, J.; Blasco, J.; Ibarz, A. Evaluating mucus exudation dynamics through isotopic enrichment and turnover of skin mucus fractions in a marine fish model. Conserv. Physiol. 2020, 8, 629–646. [Google Scholar] [CrossRef]
- Lekang, O.-I. Aquaculture Engineering, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; Available online: https://www.wiley.com/en-us/Aquaculture+Engineering%2C+2nd+Edition-p-9781118496091 (accessed on 18 March 2021).
- Ceballos-Francisco, D.; Carrillo, N.G.; Pardo-Fernández, F.J.; Cuesta, A.; Esteban, M.Á. Radiological characterization of gilthead seabream (Sparus aurata) by X-ray computed tomography. J. Fish Biol. 2020, 97, 1440–1447. [Google Scholar] [CrossRef]
- Chen, Z.; Ceballos-Francisco, D.; Guardiola, F.A.; Huang, D.; Esteban, M.Á. The alleviation of skin wound-induced intestinal barrier dysfunction via modulation of TLR signalling using arginine in gilthead seabream (Sparus aurata L). Fish Shellfish Immunol. 2020, 107, 519–528. [Google Scholar] [CrossRef]
- Chen, Z.; Ceballos-Francisco, D.; Guardiola, F.A.; Esteban, M.Á. Dietary administration of the probiotic Shewanella putrefaciens to experimentally wounded gilthead seabream (Sparus aurata L.) facilitates the skin wound healing. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, C.; Esteban, M.Á. Effect of dietary supplementation with yeast Saccharomyces cerevisiae on skin, serum and liver of gilthead seabream (Sparus aurata L). J. Fish Biol. 2020, 97, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ceballos-Francisco, D.; Guardiola, F.A.; Esteban, M.Á. Influence of skin wounds on the intestinal inflammatory response and barrier function: Protective role of dietary Shewanella putrefaciens SpPdp11 administration to gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2020, 99, 414–423. [Google Scholar] [CrossRef]
- Ursini, F.; Maiorino, M.; Forman, H.J. Redox homeostasis: The Golden Mean of healthy living. Redox Biol. 2016, 8, 205–215. [Google Scholar] [CrossRef]
- Ceballos-Francisco, D.; Cordero, H.; Guardiola, F.A.; Cuesta, A.; Esteban, M.Á. Healing and mucosal immunity in the skin of experimentally wounded gilthead seabream (Sparus aurata L). Fish Shellfish Immunol. 2017, 71, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Esteban, M.Á. An Overview of the Immunological Defenses in Fish Skin. ISRN Immunol. 2012, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Buffinton, G.D.; Doe, W.F. Depleted mucosal antioxidant defences in inflammatory bowel disease. Free Radic. Biol. Med. 1995, 19, 911–918. [Google Scholar] [CrossRef]
- Seo, S.B.; Dananjaya, S.H.S.; Nikapitiya, C.; Park, B.K.; Gooneratne, R.; Kim, T.-Y.; Lee, J.; Kim, M.C.-H.; Zoysa, D. Silver nanoparticles enhance wound healing in zebrafish (Danio rerio). Fish Shellfish Immunol. 2017, 68, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Bermejo-Nogales, A.; Nederlof, M.; Benedito-Palos, L.; Ballester-Lozano, G.F.; Folkedal, O.; Olsen, R.E.; Sitjà-Bobadilla, A.; Pérez-Sánchez, J. Metabolic and transcriptional responses of gilthead sea bream (Sparus aurata L.) to environmental stress: New insights in fish mitochondrial phenotyping. Gen. Comp. Endocrinol. 2014, 205, 305–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazado, C.C.; Lund, I.; Pedersen, P.B.; Nguyen, H.Q. Humoral and mucosal defense molecules rhythmically oscillate during a light-dark cycle in permit, Trachinotus falcatus. Fish Shellfish Immunol. 2015, 47, 902–912. [Google Scholar] [CrossRef]
- Sciandra, J.J.; Subjeck, J.R. The effects of glucose on protein synthesis and thermosensitivity in Chinese hamster ovary cells. J. Biol. Chem. 1983, 258, 12091–12093. Available online: http://www.ncbi.nlm.nih.gov/pubmed/6630181 (accessed on 13 May 2019). [CrossRef]
- Gao, Y.Y.; Liu, B.Q.; Du, Z.X.; Zhang, H.Y.; Niu, X.F.; Wang, H.Q. Implication of Oxygen-Regulated Protein 150 (ORP150) in Apoptosis Induced by Proteasome Inhibitors in Human Thyroid Cancer Cells. J. Clin. Endocrinol. Metab. 2010, 95, E319–E326. [Google Scholar] [CrossRef] [Green Version]
- Namba, T.; Hoshino, T.; Tanaka, K.-I.; Tsutsumi, S.; Ishihara, T.; Mima, S.; Suzuki, K.; Ogawa, S.; Mizushima, T. Up-Regulation of 150-kDa Oxygen-Regulated Protein by Celecoxib in Human Gastric Carcinoma Cells. Mol. Pharmacol. 2006, 71, 860–870. [Google Scholar] [CrossRef]
- Sciandra, J.J.; Subjeck, J.R.; Hughes, C.S. Induction of glucose-regulated proteins during anaerobic exposure and of heat-shock proteins after reoxygenation. Proc. Natl. Acad. Sci. USA 1984, 81, 4843–4847. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.-W.; Henderson, B.W.; Shen, J.-W.; Subjeck, J.R. Induction of glucose regulated proteins during growth of a murine tumor. J. Cell. Physiol. 1993, 154, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Whelan, S.A.; Hightower, L.E. Differential induction of glucose-regulated and heat shock proteins: Effects of pH and sulfhydryl-reducing agents on chicken embryo cells. J. Cell. Physiol. 1985, 125, 251–258. [Google Scholar] [CrossRef]
- Wang, H.; Pezeshki, A.M.; Yu, X.; Guo, C.; Subjeck, J.R.; Wang, X.-Y. The Endoplasmic Reticulum Chaperone GRP170: From Immunobiology to Cancer Therapeutics. Front. Oncol. 2015, 4, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzec, M.; Eletto, D.; Argon, Y. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim. Biophys. Acta Mol. Cell Res. 2012, 1823, 774–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Niu, X.; Zhang, Q.; Chen, H.; Gao, A.; Qi, S.; Xiang, R.; Belting, M.; Zhang, S. Mitochondria chaperone GRP75 moonlighting as a cell cycle controller to derail endocytosis provides an opportunity for nanomicrosphere intracellular delivery. Oncotarget 2017, 8, 58536–58552. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.J.; Chang, Y.C.; Chang, H.C.; Wang, C.K.; Hung, Y.C.; Lin, Y.E.; Chan, C.C.; Chen, H.Y.; Chang, C.H.; Sang, T.K. Derlin-1 Regulates Mutant VCP-Linked Pathogenesis and Endoplasmic Reticulum Stress-Induced Apoptosis. PLoS Genet. 2014, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kalmar, B.; Greensmith, L. Activation of the heat shock response in a primary cellular model of motoneuron neurodegeneration-evidence for neuroprotective and neurotoxic effects. Cell. Mol. Biol. Lett. 2009, 14, 319–335. [Google Scholar] [CrossRef]
- Espinosa, C.; López-Jiménez, J.A.; Pérez-Llamas, F.; Guardiola, F.A.; Esteban, M.A.; Arnao, M.B.; Zamora, S. Long-term intake of white tea prevents oxidative damage caused by adriamycin in kidney of rats. J. Sci. Food Agric. 2015, 96, 3079–3087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chablais, F.; Jazwinska, A.; Jones, B.; Petkovich, M.; Tada, M.; Ekker, M.; Akimenko, M.A. IGF signaling between blastema and wound epidermis is required for fin regeneration. Development 2010, 137, 871–879. [Google Scholar] [CrossRef] [Green Version]
- McCartney-Francis, N.L.; Frazier-Jessen, M.; Wahl, S.M. TGF-β: A Balancing Act. Int. Rev. Immunol. 1998, 16, 553–580. [Google Scholar] [CrossRef]
- Chen, K.; Qu, S.; Chowdhury, S.; Noxon, I.C.; Schonhoft, J.D.; Plate, L.; Powers, E.T.; Kelly, J.W.; Lander, G.C.; Wiseman, R.L. The endoplasmic reticulum HSP40 co-chaperone ERdj3/DNAJB11 assembles and functions as a tetramer. EMBO J. 2017, 36, 2296–2309. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Chowdhry, S.; Dinkova-Kostova, A.T.; Sutherland, C. Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3. Biochem. Soc. Trans. 2015, 43, 611–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helson, L.; Rosenspire, K.; Kapellaris, A.; Bigler, R.; Richards, P.; Srivastava, S.; Meinken, G.; Chaglassian, T. Uptake of ruthenium-labeled transferrin in healing wounds. Int. J. Nucl. Med. Biol. 1983, 10, 237–239. [Google Scholar] [CrossRef]
- He, J.; Wang, J.; Xu, M.; Wu, C.; Liu, H. The cooperative expression of Heat Shock Protein 70 KD and 90 KD gene in juvenile Larimichthys crocea under Vibrio alginolyticus stress. Fish Shellfish Immunol. 2016, 58, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Hangzo, H.; Banerjee, B.; Saha, S.; Saha, N. Ammonia stress under high environmental ammonia induces Hsp70 and Hsp90 in the mud eel, Monopterus cuchia. Fish Physiol. Biochem. 2016, 95, 203–212. [Google Scholar] [CrossRef]
- Garbuz, D.G.; Zatsepina, O.G.; Evgen’ev, M.B. The Major Human Stress Protein Hsp70 as a Factor of Protein Homeostasis and a Cytokine-Like Regulator. Mol. Biol. 2019, 53, 200–217. [Google Scholar] [CrossRef]
- Debatin, K.; Goldman, C.; Waldmann, T.; Krammer, P. APO-1-induced apoptosis of leukemia cells from patients with adult T-cell leukemia. Blood 1993, 81, 2972–2977. Available online: http://www.bloodjournal.org/content/81/11/2972.long?sso-checked=true (accessed on 19 July 2019). [CrossRef] [Green Version]
- Genereux, J.C.; Wiseman, R.L. Regulating extracellular proteostasis capacity through the unfolded protein response. Prion 2015, 9, 10–21. [Google Scholar] [CrossRef]
- Espinosa, C.; Pérez-Llamas, F.; Guardiola, F.A.; Esteban, M.A.; Arnao, M.B.; Zamora, S.; López-Jiménez, J.A. Molecular mechanisms by which white tea prevents oxidative stress. J. Physiol. Biochem. 2014, 70, 891–900. [Google Scholar] [CrossRef]
- McCord, J.M.; Fridovich, I. Superoxide dismutase: An enzymic Funcion for Erytrhocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Cerezuela, R.; Meseguer, J.; Esteban, M.Á. Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2013, 34, 843–848. [Google Scholar] [CrossRef]
- Leung, L.Y.; Kwong, A.K.Y.; Man, A.K.Y.; Woo, N.Y.S. Direct actions of cortisol, thyroxine and growth hormone on IGF-I mRNA expression in sea bream hepatocytes. Comp. Biochem. Physiol. Mol. Integr. Physiol. 2008, 151, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, M.; Chaves-Pozo, E.; Cabas, I.; Mulero, V.; García-Ayala, A.; García-Alcázar, A. Testosterone implants modify the steroid hormone balance and the gonadal physiology of gilthead seabream (Sparus aurata L.) males. J. Steroid. Biochem. Mol. Biol. 2013, 138, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Genereux, J.C.; Qu, S.; Zhou, M.; Ryno, L.M.; Wang, S.; Shoulders, M.D.; Kaufman, R.J.; Lasmézas, C.I.; Kelly, J.W.; Wiseman, R.L. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J. 2014, 34, 4–19. [Google Scholar] [CrossRef] [PubMed]
Gen | Accession Number | Primer Sequence 5′-3′ | References |
---|---|---|---|
ef1α | AF184170 | F: CTTCAACGCTCAGGTCATCAT | [20] |
R: GCACAGCGAAACGACCAAGGGGA | |||
18S | AM490061 | F: CGAAAGCATTTGCCAAGAAT | [20] |
R: AGTTGGCACCGTTTATGGTC | |||
b-actin | X89920 | F: TCCTGCGGAATCCATGAGA | [20] |
R: GACGTCGCACTTCATGATGCT | |||
grp-170 | JQ3088211 | F: CAGAGGAGGCAGACAGCAAGAC | [20] |
R: TTCTCAGACTCAGCATTTCCAGATTTC | |||
grp-94 | JQ3088201 | F: AAGGCACAGGCTTACCAGACAG | [20] |
R: CTTCAGCATCATCGCCGACTTTC | |||
grp-75 | DQ524993 | F: TCCGGTGTGGATCTGACCAAAGAC | [20] |
R: TGTTTAGGCCCAGAAGCATCCATG | |||
sod | AJ937872 | F: CCATGGTAAGAATCATGGCGG | [20] |
R: CGTGGATCACCATGGTTCTG | |||
tf | JF309047 | F: CAGGACCAGCAGACCAAGTT | [20] |
R: TGGTGGAGTCCTTGAAGAGG | |||
hsp70 | EU805481 | F: AATGTTCTGCGCATCATCAA | [20] |
R: GCCTCCACCAAGATCAAAGA | |||
igf-I | AY608674 | F: TCTCCTGTAGCCACACCCTCTC | [55] |
R: GAAGCAGCACTCGTCCACAATG | |||
tgfb1 | AF424703 | F: AGAGACGGGCAGTAAAGAA | [56] |
R: GCCTGAGGAGACTCTGTTGG | |||
der | JQ3088251 | F: ACTGCCTCGGTTGCCTTTCC | [20] |
R: TGGCTGTCACAAGTCTCCAGATATG | |||
apo1 | F: CTCTTCAGGGTTCCCTTTCC | [20] | |
R: TTCAGGGCCTCAAGATCAAC | |||
erdj3 | JQ3088271 | F: AACCGACAGCAGCAGGACAG | [57] |
R: ACTTCTTCAAGCGTGACCTCCAG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Ruíz, C.; Esteban, M.Á. Wound-Induced Changes in Antioxidant Enzyme Activities in Skin Mucus and in Gene Expression in the Skin of Gilthead Seabream (Sparus aurata L.). Fishes 2021, 6, 15. https://doi.org/10.3390/fishes6020015
Espinosa-Ruíz C, Esteban MÁ. Wound-Induced Changes in Antioxidant Enzyme Activities in Skin Mucus and in Gene Expression in the Skin of Gilthead Seabream (Sparus aurata L.). Fishes. 2021; 6(2):15. https://doi.org/10.3390/fishes6020015
Chicago/Turabian StyleEspinosa-Ruíz, Cristóbal, and María Ángeles Esteban. 2021. "Wound-Induced Changes in Antioxidant Enzyme Activities in Skin Mucus and in Gene Expression in the Skin of Gilthead Seabream (Sparus aurata L.)" Fishes 6, no. 2: 15. https://doi.org/10.3390/fishes6020015
APA StyleEspinosa-Ruíz, C., & Esteban, M. Á. (2021). Wound-Induced Changes in Antioxidant Enzyme Activities in Skin Mucus and in Gene Expression in the Skin of Gilthead Seabream (Sparus aurata L.). Fishes, 6(2), 15. https://doi.org/10.3390/fishes6020015