Biological and Ecological Roles of External Fish Mucus: A Review
Abstract
:1. Introduction
2. Mucus Production
3. Mucus Sampling and Analysis
4. Mucus Biological Activities
4.1. Antimicrobial Components
4.2. Immune-Related Components
4.3. Other Activities
5. Mucus Roles in Ecological Interactions
5.1. Intra-Specific Communication
5.2. Interspecific Communication
6. Use of “Omics” in Fish Mucus Research
7. Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Todd, J.H.; Atema, J.; Bardach, J.E. Chemical communication in social behavior of a fish, the yellow bullhead (Ictalurus natalis). Science 1967, 158, 672–673. [Google Scholar] [CrossRef] [PubMed]
- Beklioglu, M.; Telli, M.; Gozen, A.G. Fish and mucus-dwelling bacteria interact to produce a kairomone that induces diel vertical migration in Daphnia. Freshwater Biol. 2006, 51, 2200–2206. [Google Scholar] [CrossRef]
- Shephard, K.L. Mucus on the epidermis of fish and its influence on drug delivery. Adv. Drug Del. Rev. 1993, 11, 403–417. [Google Scholar] [CrossRef]
- Shepard, K.L. Functions for fish mucus. Rev. Fish. Biol. Fish. 1994, 4, 401–429. [Google Scholar] [CrossRef]
- Oosten, J.V. Skin and scales. In The Physiology of Fishes; Brown, M.E., Ed.; Academic Press: New York, NY, USA, 1957. [Google Scholar]
- Coello, W.F.; Khan, M. Protection against heavy metal toxicity by mucus and scales in fish. Arch. Env. Contam. Toxicol. 1996, 30, 319–326. [Google Scholar] [CrossRef]
- Chong, K.; Joshi, S.; Jin, L.T.; Shu-Chien, A.C. Proteomics profiling of epidermal mucus secretion of a cichlid (Symphysodon aequifasciata) demonstrating parental care behavior. Proteomics 2006, 6, 2251–2258. [Google Scholar] [CrossRef] [PubMed]
- Gómez, D.; Sunyer, J.O.; Salinas, I. The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish. Shellfish Immunol. 2013, 35, 1729–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, G.; Maie, T.; Moody, K.N.; Schrank, G.D.; Blob, R.W.; Schoenfuss, H.L. Finding paradise: Cues directing the migration of the waterfall climbing Hawaiian gobioid Sicyopterus stimpsoni. J. Fish. Biol. 2012, 81, 903–920. [Google Scholar] [CrossRef] [PubMed]
- Salinas, I. The mucosal immune system of teleost fish. Biology 2015, 4, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Zamzow, J.P. Ultraviolet-absorbing compounds in the mucus of shallow-dwelling tropical reef fishes correlate with environmental water clarity. Mar. Ecol. Prog. Ser. 2007, 343, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Purcell, J.E.; Anderson, P.A.V. Electrical responses to water-soluble components of fish mucus recorded from the cnidocytes of a fish predator, Physalia physalis. Mar. Freshwater Behav. Physiol. 1995, 26, 149–162. [Google Scholar] [CrossRef]
- Sugiyama, N.; Araki, M.; Ishida, M.; Nagashima, Y.; Shiomi, K. Further isolation and characterization of grammistins from the skin secretion of the soapfish Grammistes sexlineatus. Toxicon 2005, 45, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.K.; Wang, Y.-Y.; Wirtz, D.; Hanes, J. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 2009, 61, 86–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteban, M.A. An overview of the immunological defenses in fish skin. ISRN Immunol. 2012, 853470, 1–29. [Google Scholar] [CrossRef]
- Al-Zaidan, A.S.; Endo, M.; Maita, M.; Gonçalves, A.T.; Futami, K.; Katagiri, T. A toxicity bioassay study concerning the effect of un-ionized ammonia on the mucus cells response originating from the gills of zebrafish Danio rerio. Fish. Sci. 2012, 79, 129–142. [Google Scholar] [CrossRef]
- Terova, G.; Cattaneo, A.G.; Preziosa, E.; Bernardini, G.; Saroglia, M. Impact of acute stress on antimicrobial polypeptides mRNA copy number in several tissues of marine sea bass (Dicentrarchus labrax). BMC Immunol. 2011, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Easy, R.H.; Ross, N.W. Changes in Atlantic salmon Salmo salar mucus components following short- and long-term handling stress. J. Fish. Biol. 2010, 77, 1616–1631. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, C.; Su, B.; Beck, B.H.; Peatman, E. Short-term feed deprivation alters immune status of surface mucosa in channel catfish (Ictalurus punctatus). PLoS ONE 2013, 8, e74581. [Google Scholar] [CrossRef] [PubMed]
- Cone, R.A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 2009, 61, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J.K.; Navabi, N.; Rodriguez-Piñeiro, A.M.; Alomran, A.H.A.; Premaratne, P.; Fernandez, H.R.; Banerjee, D.; Sjovall, H.; Hansson, G.C.; Linden, S.K. Dynamic changes in mucus thickness and ion secretion during Citrobacter rodentium infection and clearance. PLoS ONE 2013, 8, e84430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajan, B.; Lokesh, J.; Kiron, V.; Brinchmann, M.F. Differentially expressed proteins in the skin mucus of Atlantic cod (Gadus morhua) upon natural infection with Vibrio anguillarum. BMC Vet. Res. 2013, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Marel, M.; Caspari, N.; Neuhaus, H.; Meyer, W.; Enss, M.-L.; Steinhagen, D. Changes in skin mucus of common carp, Cyprinus carpio L., after exposure to water with a high bacterial load. J. Fish. Dis. 2010, 33, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, M.S.; Leadbeater, S.; Garcia, C.; Sylvain, F.-E.; Custodio, M.; Ang, K.P.; Powell, F.; Carvalho, G.R.; Creer, S.; Elliot, J.; et al. Parasitism perturbs the mucosal microbiome of Atlantic salmon. Sci. Rep. 2017, 7, 43465. [Google Scholar] [CrossRef] [PubMed]
- Reid, K.M.; Patel, S.; Robinson, A.J.; Bu, L.; Jarungsriapisit, J.; Moore, L.J.; Salinas, I. Salmonid alphavirus causes skin disbyosis in Atlantic salmon (Salmon salar L.) post-smolts. PLoS ONE 2017, 12, e0172856. [Google Scholar] [CrossRef] [PubMed]
- Rajanbabu, V.; Chen, J.-Y. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides 2011, 32, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Rakers, S.; Niklasson, L.; Steinhagen, D.; Kruse, C.; Schauber, J.; Sundell, K.; Paus, R. Antimicrobial peptides (AMPs) from fish epidermis: Perspectives for investigative dermatology. J. Investig. Dermatol. 2013, 133, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Beck, B.H.; Peatman, E. Mucosal Health in Aquaculture, 1st ed.; Academic Press: New York, NY, USA, 2015. [Google Scholar]
- Elliott, D.G.; McKibben, C.L.; Conway, C.M.; Purcell, M.K.; Chase, D.M.; Applegate, L.J. Testing of candidate non-lethal sampling methods for detection of Renibacterium salmoninarum in juvenile Chinook salmon Oncorhynchus tshawytscha. Dis. Aquat. Org. 2015, 114, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, S.J.; Thompson, K.D.; Adams, A.; Bergmann, S.M. Sensitivity of seven PCRs for early detection of koi herpesvirus in experimentally infected carp, Cyprinus carpio L., by lethal and non-lethal sampling methods. J. Fish. Dis. 2015, 38, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Tavares, G.C.; Costa, F.A.; Santos, R.R.D.; Barony, G.M.; Leal, C.A.G.; Figueiredo, H.C.P. Nonlethal sampling methods for diagnosis of Streptococcus agalactiae infection in Nile tilapia, Oreochromis niloticus (L.). Aquaculture 2016, 454, 237–242. [Google Scholar] [CrossRef]
- Dzul-Caamal, R.; Olivares-Rubio, H.F.; Salazar-Coria, L.; Rocha-Gómez, M.A.; Vega-López, A. Multivariate analysis of biochemical responses using non-invasive methods to evaluate the health status of the endangered blackfin goodeid (Girardinichthys viviparus). Ecol. Ind. 2016, 60, 1118–1129. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Dioguardi, M.; Parisi, M.G.; Trapani, M.R.; Meseguer, J.; Cuesta, A.; Cammarata, M.; Esteban, M.A. Evaluation of waterborne exposure to heavy metals in innate immune defences present on skin mucus of gilthead seabream (Sparus aurata). Fish. Shellfish Immunol. Probiotics 2015, 45, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Meucci, V.; Arukwe, A. Detection of vitellogenin and zona radiata protein expressions in surface mucus of immature juvenile Atlantic salmon (Salmo salar) exposed to waterborne nonylphenol. Aquat Toxicol. 2005, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hay, M.E. Marine chemical ecology: Chemical signals and cues structure marine populations, communities, and ecosystems. Ann. Rev. Mar. Sci. 2009, 1, 193–212. [Google Scholar] [CrossRef] [PubMed]
- Brinchmann, M.F. Immune relevant molecules identified in the skin mucus of fish using -omics technologies. Mol. BioSyst. 2016, 12, 2056–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, C.; Salinas, I. Under pressure: Interactions between commensal microbiota and the teleost immune system. Front. Immunol. 2017, 8, 559. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.C.; Rearick, J.I.; Nettesheim, P.; Jetten, A.M. Biochemical characterization of mucous glycoproteins synthesized and secreted by hamster tracheal epithelial cells in primary culture. J. Biol. Chem. 1985, 260, 4021–4027. [Google Scholar] [PubMed]
- Chua, C.E.L.; Lim, Y.S.; Lee, M.G.; Tang, B.L. Non-classical membrane trafficking processes galore. J. Cell Physiol. 2012, 227, 3722–3730. [Google Scholar] [CrossRef] [PubMed]
- Nickel, W. The mystery of nonclassical protein secretion. Eur. J. Biochem. 2003, 270, 2109–2119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juszczynski, P.; Ouyang, J.; Monti, S.; Rodig, S.J.; Takeyama, K.; Abramson, J.; Chen, W.; Kutok, J.L.; Rabinovich, G.A.; Shipp, M.A. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc. Natl. Acad. Sci. USA 2007, 104, 13134–13139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bøhle, L.A.; Brede, D.A.; Diep, D.B.; Holo, H.; Nes, I.F. Specific degradation of the mucus adhesion-promoting protein (MapA) of Lactobacillus reuteri to an antimicrobial peptide. Appl. Environ. Microbiol. 2010, 76, 7306–7309. [Google Scholar] [CrossRef] [PubMed]
- Mansson, M.; Gram, L.; Larsen, T.O. Production of bioactive secondary metabolites by marine vibrionaceae. Mar. Drugs 2011, 9, 1440–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, L.M.; Wong, W.R.; Riener, R.M.; Schulze, C.J.; Linington, R.G. Examining the fish microbiome: Vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. PLoS ONE 2012, 7, e35398. [Google Scholar] [CrossRef] [PubMed]
- Bergsson, G.; Agerberth, B.; Jörnvall, H.; Gudmundsson, G.H. Isolation and identification of antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua). FEBS J. 2005, 272, 4960–4969. [Google Scholar] [CrossRef] [PubMed]
- Kitani, Y.; Tsukamoto, C.; Zhang, G. Identification of an antibacterial protein as L-amino acid oxidase in the skin mucus of rockfish Sebastes schlegeli. FEBS J. 2007, 274, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Salles, C.M.C.; Gagliano, P.; Leitão, S.; Salles, J.B.; Guedes, H.L.M.; Cassano, V.P.F.; De-Simone, S.G. Identification and characterization of proteases from skin mucus of tambacu, a Neotropical hybrid fish. Fish. Physiol. Biochem. 2007, 33, 173–179. [Google Scholar] [CrossRef]
- Liang, Y.; Guan, R.; Huang, W.; Xu, T. Isolation and identification of a novel inducible antibacterial peptide from the skin mucus of Japanese eel, Anguilla Japonica. Prot. J. 2011, 30, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Ekman, D.R.; Skelton, D.M.; Davis, J.M.; Villeneuve, D.L.; Cavallin, J.E.; Schroeder, A.; Jensen, K.M.; Ankley, G.T.; Collette, T.W. Metabolite profiling of fish skin mucus: A novel approach for minimally-invasive environmental exposure monitoring and surveillance. Environ. Sci. Technol. 2015, 49, 3091–3100. [Google Scholar] [CrossRef] [PubMed]
- LaPatra, S.E.; Rohovec, J.S.; Fryer, J.L. Detection of infectious hematopoietic necrosis virus in fish mucus. Fish. Pathol. 1989, 24, 197–202. [Google Scholar] [CrossRef]
- Raj, V.S.; Fournier, G.; Rakus, K.; Ronsmans, M.; Ouyang, P.; Michel, B.; Delforges, C.; Costes, B.; Farnir, F.; Leroy, B.; et al. Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells. Vet. Parasitol. 2011, 42, 92. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, L.; Tartor, H.; Grove, S.; Kristoffersen, A.B.; Uhlig, S. Workflow for the targeted and untargeted detection of small metabolites in fish skin mucus. Fishes 2018, 3, 21. [Google Scholar] [CrossRef]
- Flik, G.; van Rijs, J.H.; Wendelaar Bonga, S.E. Evidence for the presence of calmodulin in fish mucus. Eur. J. Biochem. 1984, 138, 651–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stabell, O.E.; Selset, R. Comparison of mucus collecting methods in fish olfaction. Acta Physiol. Scand. 1980, 108, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Ross, N.W.; Firth, K.J.; Wang, A.; Burka, J.F.; Johnson, S.C. Changes in hydrolytic enzyme activities of naïve Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis. Aquatic. Org. 2000, 41, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; MacKinnon, S.L.; Ross, N.W. A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 148, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Braun, R.; Arnesen, J.A.; Rinne, A.; Hjelmeland, K. Immunohistological localization of trypsin in mucus-secreting layers of Atlantic salmon; Salmo salar L. J. Fish. Dis. 1990, 13, 233–238. [Google Scholar] [CrossRef]
- Mittal, A.K.; Fujimori, O.; Ueda, H.; Yamada, K. Carbohydrates in the epidermal mucous cells of a fresh-water fish Mastacembelus pancalus (mastacembelidae, Pisces) as studied by electron-microscopic cytochemical methods. Cell Tissue Res. 1995, 280, 531–539. [Google Scholar] [CrossRef]
- Nakamura, O.; Watanabe, T.; Kamiya, H.; Muramoto, K. Galectin containing cells in the skin and mucosal tissues in Japanese conger eel, Conger myriaster: An immunohistochemical study. Dev. Comp. Immunol. 2001, 25, 431–437. [Google Scholar] [CrossRef]
- De Matos, L.L.; Trufelli, D.C.; de Matos, M.G.L.; da Silva Pinhal, M.A. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomarker Insights 2010, 5, 9–20. [Google Scholar] [CrossRef]
- Burry, R.W. Controls for immunocytochemistry. J. Histochem. Cytochem. 2011, 59, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Schwamborn, K.; Caprioli, R.M. MALDI Imaging Mass Spectrometry-painting molecular mictures. Mol. Oncol. Oncoproteomics 2010, 4, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Aichler, M.; Walch, A. MALDI Imaging mass spectrometry: Current frontiers and perspectives in pathology research and practice. Lab. Investig. 2015, 9, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Demeyer, M.; Wisztorski, M.; Decroo, C.; Winter, J.D.; Caulier, G.; Hennebert, E.; Eeckhaut, I.; Fournier, I.; Flammang, P.; Gerbaux, P. Inter- and intra-organ spatial distributions of sea star saponins by MALDI imaging. Anal. Bioanal. Chem. 2015, 407, 8813–8824. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.W. Fish cutaneous mucus: A new source of skin surface lipid. Lipids 1970, 5, 947–949. [Google Scholar] [CrossRef]
- Munday, P.L.; Schubert, M.; Baggio, J.A.; Jones, G.P.; Caley, M.J.; Grutter, A.S. Skin toxins and external parasitism of coral-dwelling gobies. J. Fish. Biol. 2003, 62, 976–981. [Google Scholar] [CrossRef]
- Llewellyn, M.S.; Boutin, S.; Hoseinifar, S.H.; Derome, N. Teleost microbiomes: The state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front. Microbiol. 2014, 5, 1–17. [Google Scholar] [CrossRef] [PubMed]
- McAuley, J.L.; Linden, S.K.; Png, C.W.; King, R.M.; Pennington, H.M.; Gendler, S.J.; Florin, T.H.; Hill, G.R.; Korolik, V.; McGuckin, M.A. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Investig. 2007, 117, 2313–2324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergstron, K.S.B.; Kissoon-Singh, V.; Gibson, D.L.; Ma, C.; Montero, M.; Sham, H.P.; Ryz, N.; Huang, T.; Velcich, A.; Finlay, B.B.; et al. Muc 2 protects against lethal infectious colitis by dissacociated pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 2010, 13, e1000902. [Google Scholar]
- Roy, M.G.; Livraghi-Butrico, A.; Fletcher, A.A.; McElwee, M.M.; Evans, S.E.; Boerner, R.M.; Alexander, S.N.; Bellinghausen, L.K.; Song, A.S.; Petrova, Y.M.; et al. Muc5 is required for airway defence. Nature 2014, 505, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Ebran, N.; Julien, S.; Orange, N.; Auperin, B.; Molle, G. Isolation and characterization of novel glycoproteins from fish epidermal mucus: Correlation between their pore-forming properties and their antibacterial activities. Biochim. Biophys. Acta 2000, 1467, 271–280. [Google Scholar] [CrossRef]
- Masso-Silva, J.; Diamond, G. Antimicrobial peptides from fish. Pharmaceuticals 2014, 7, 265–310. [Google Scholar] [CrossRef] [PubMed]
- Silphaduang, U.; Noga, E.J. Antimicrobials: Peptide antibiotics in mast cells of fish. Nature 2001, 414, 268–269. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.M.; Weis, P.; Diamong, G. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of olive flounder. J. Biol. Chem. 1997, 272, 12008–12013. [Google Scholar] [CrossRef] [PubMed]
- Salerno, G.; Parrinello, N.; Roch, P.; Cammarata, M. cDNA sequence and tissue expression of an antimicrobial peptide, dicentracin; a new component of the moronecidin family isolated from head kidney leukocytes of sea bass Dicentrarchus labrax. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 14, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Lauth, X.; Shike, H.; Burns, J.C.; Westerman, M.E.; Ostland, V.E.; Carlberg, J.M.; Van Olst, J.C.; Nizet, V.; Taylor, S.W.; Shimizu, C.; et al. Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. J. Biol. Chem. 2002, 277, 5030–5039. [Google Scholar] [CrossRef] [PubMed]
- Oren, Z.; Shai, Y. A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur. J. Biochem. 1996, 237, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Su, Y. Isolation and identification of pelteobagrin, a novel antimicrobial peptide from the skin mucus of yellow catfish (Pelteobagrus fulvidraco). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 158, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Casadei, E.; Wang, T.; Zou, J.; Gonzalez-Vecina, J.L.; Wadsowrth, S.; Secombes, C.J. Characterization of three novel beta-defensin antimicrobial peptides in rainbow trout (Oncorhyncus mykiss). Mol. Immun. 2009, 46, 3358–3366. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, H.; Shan, S.; Qi, C.; Ann, L.; Yang, G. Characterization and expression pattern of a novel β-defensin in common carp (Cyprinus carpio L.): Implications for its role in mucosal immunity. Biosci. Biotechnol. Biochem. 2014, 78, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.J.; Desbois, A.P.; Dyrynda, E.A. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs 2010, 8, 1213–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, I.Y.; Park, C.B.; Kim, M.S.; Kim, S.C. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett. 1998, 437, 258–262. [Google Scholar] [CrossRef]
- Birkemo, G.A.; Lüders, T.; Andersen, O.; Nes, I.; Nisson-Meyer, J. Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.). Biochim. Biophys. Acta 2003, 1646, 207–215. [Google Scholar] [CrossRef]
- Lüders, T.; Birkemo, G.A.; Nissen-Meyer, J.; Andersen Nes, I.F. Proline conformation-dependent antimicrobial activity of a proline-rich histone h1 N-terminal Peptide fragment isolated from the skin mucus of Atlantic salmon. Antimicrob. Agents Chemother. 2005, 49, 2399–2406. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.M.O.; Molle, G.; Kemp, G.D.; Smith, V.J. Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev. Comp. Immunol. 2004, 28, 127–138. [Google Scholar] [CrossRef]
- Conceição, K.; Monteiro-dos-Santos, J.; Seibert, C.S.; Silva, P.I.; Marques, E.E.; Richardson, M.; Lopes-Ferreira, M. Potamotrygon cf. henlei stingray mucus: Biochemical features of a novel antimicrobial protein. Toxicon 2012, 60, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Robinette, D.; Wada, S.; Arroll, T.; Levy, M.G.; Miller, W.L.; Noga, E.J. Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: Characterization of broad-spectrum histone-like antimicrobial proteins. Cell Mol. Life Sci. 1998, 54, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Ullal, A.J.; Wayne Litaker, R.; Noga, E.J. Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus, Rafinesque). Dev. Comp. Immunol. 2008, 32, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.M.O.; Smith, V.J. A novel antimicrobial function for a ribosomal peptide from rainbow trout skin. Biochem. Biophys. Res. Commun. 2002, 296, 167–171. [Google Scholar] [CrossRef]
- Fuochi, V.; Volti, G.L.; Camiolo, G.; Tiralongo, F.; Giallongo, C.; Distefano, A.; Petronio-Petronio, G.; Barbagallo, I.; Viola, M.; Furneri, P.M.; et al. Antimicrobial and anti-proliferative effects of skin mucus derived from Dasyatis pastinaca (Lynnaeus 1758). Mar. Drugs 2017, 15, 372. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Huang, K.; Xu, H. Isolation and characterization of a novel polysaccharide from the mucus of the loach, Misgurnus anguillicaudatus. Carbohydr. Polym. 2002, 49, 367–371. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, K.X. Characteristic immunostimulation by MAP, a polysaccharide isolated from the mucus of the loach, Misgurnus anguillicaudatus. Carbohydr. Polym. 2005, 59, 75–82. [Google Scholar] [CrossRef]
- Rajan, B.; Fernandes, J.M.O.; Caipang, C.M.A.; Kiron, V.; Rombout, J.H.W.M.; Brinchmann, M.F. Proteome reference map of the skin mucus of Atlantic cod (Gadus morhua) revealing immune competent molecules. Fish. Shellfish Immunol. 2011, 31, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Shiomi, K.; Uematsu, H.; Yamanaka, H.; Kikuchi, T. Purification and characterization of a galactose-binding lectin from the skin mucus of the conger eel Conger myriaster. Comp. Biochem. Physiol. B Comp. Biochem. 1989, 92, 255–261. [Google Scholar] [CrossRef]
- Suzuki, Y.; Tasumi, S.; Tsutsui, S.; Okamoto, M.; Suetake, H. Molecular diversity of skin mucus lectins in fish. Comp. Biochem. B Biochem. Mol. Biol. 2003, 136, 723–730. [Google Scholar] [CrossRef]
- Tsutsui, S.; Nishikawa, H.; Mano, H.; Hirose, H.; Tasumi, S.; Suetake, H.; Suzuki, Y. Possible role of a skin mucus lectin from fugu Takifugu rubripes in excluding marine bacteria from the body surface. Fisheries Sci. 2006, 72, 455–457. [Google Scholar] [CrossRef]
- Tsutsui, S.; Komatsu, Y.; Sugiura, T.; Araki, K.; Nakamura, O. A unique epidermal mucus lectin identified from catfish (Silurus asotus): First evidence of intelectin in fish skin slime. J. Biochem. 2011, 150, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Nigam, A.K.; Kumari, U.; Mittal, S.; Mittal, A.K. Comparative analysis of innate immune parameters of the skin mucous secretions from certain freshwater teleosts, inhabiting different ecological niches. Fish. Physiol. Biochem. 2012, 38, 1245–1256. [Google Scholar] [CrossRef] [PubMed]
- Easy, R.H.; Ross, N.W. Changes in Atlantic salmon (Salmo salar) epidermal mucus protein composition profiles following infection with sea lice (Lepeophtheirus salmonis). Comp. Biochem. Physiol. Part. D 2009, 4, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Parra, D.; Gomez, D.; Salinas, I.; Zhang, Y.-A.; Jorgensen, L.G.; Heinecke, R.D.; Buchmann, K.; LaPatra, S.; Sunyer, J.O. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc. Nat. Acad. Sci. USA 2013, 110, 13097–13102. [Google Scholar] [CrossRef] [PubMed]
- Eckes, M.J.; Siebeck, U.E.; Dove, S.; Grutter, A.S. Ultraviolet sunscreens in reef fish mucus. Mar. Ecol. Prog. Ser. 2008, 353, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Jurado, J.; Fuentes-Almagro, C.A.; Guardiola, F.A.; Cuesta, A.; Esteban, M.Á.; Prieto-Álamo, M.-J. Proteomic profile of the skin mucus of farmed gilthead seabream (Sparus aurata). J. Proteomics 2015, 120, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.S.R. Fish skin toxins. In Handhook of Natural Toxins; Marine Toxins and Venoms; Tu, A.T., Ed.; Marcel Dekker: New York, NY, USA, 1988; Volume 3. [Google Scholar]
- Boutin, S.; Audet, C.; Derome, N. Probiotic treatment by indigenous bacteria decreases mortality without disturbing the natural microbiota of Salvelinus fontinalis. Can. J. Microbiol. 2013, 59, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Pérez, T.; Balcázar, J.L.; Ruiz-Zarzuela, I.; Halaihel, N.; Vendrell, D.; de Blas, I.; Múzquiz, J.L. Host–microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol. 2010, 3, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Boutin, S.; Sauvage, C.; Bernatchez, L.; Audet, C.; Derome, N. Inter individual variations of the fish skin microbiota: Host genetics basis of mutualism? PLoS ONE 2014, 9, e102649. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.; Takizawa, F.; Sunyer, J.O.; Salinas, I. Rainbow trout (Oncorhynchus mykiss) secretory component binds to commensal bacteria and pathogens. Sci. Rep. 2017, 7, 41753. [Google Scholar] [CrossRef] [PubMed]
- Sepahi, A.; Cordero, H.; Goldfine, H.; Esteban, M.A.; Salinas, I. Symbiont-derived sphingolipids modulate mucosal homeostasis and B cells in teleost fish. Sci. Rep. 2017, 6, 39054. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.L.; Jackson, R.L.; Olson, J.B. Bacteria associated with lionfish (Pterois volitans/miles complex) exhibit antibacterial activity against known fish pathogens. Mar. Ecol. Prog. Ser. 2016, 558, 167–180. [Google Scholar] [CrossRef]
- Lowrey, L.; Woodhams, D.C.; Tacchi, L.; Salinas, I. Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl. Environ. Microbiol 2015, 81, 6915–6925. [Google Scholar] [CrossRef] [PubMed]
- Guardiola, F.A.; Cuesta, A.; Arizcun, M.; Meseguer, J.; Esteban, M.A. Comparative skin mucus and serum humoral defence mechanisms in the teleost gilthead seabream (Sparus aurata). Fish. Shellfish Immunol. 2014, 36, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, J.; Xu, X.; Fu, J.; Li, J. Expression of complement component C7 and involvement in innate immune responses to bacteria in grass carp. Fish. Shellfish Immunol. 2012, 33, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Wang, J.; Zhang, X.; Song, J. Functional C1q is present in the skin mucus of Siberian sturgeon (Acipenser baerii). Integr. Zool. 2015, 10, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Sunyer, J.O. Fishing for mammalian paradigms in the teleost immune system. Nat. Immunol. 2013, 14, 320–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.; Liu, W.; Wu, K.; Wang, W.; Zhang, X. sIgZ exhibited materinal transmission in embryonic development and played a prominent role in mucosal immune response of Megalabrama amblycephala. Fish. Shelffish Immunol. 2016, 54, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Easy, R.H.; Trippel, E.A.; Burt, M.D.B.; Cone, D.K. Identification of transferrin in Atlantic cod Gadus morhua epidermal mucus. J. Fish. Biol. 2012, 81, 2059–2063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Wang, P.; Zhang, N.; Chen, D.D.; Nie, P.; Li, J.L.; Zhang, Y.A. B cells functions can be modulated by antimicrobial peptides in rainbow trout Onchorhynchus mykiss: Novel insights into the innate nature B cells in fish. Front. Immunol. 2017, 4, 388. [Google Scholar]
- Balasubramanian, S.; Revathi, A.; Gunasekaran, C. Studies on anticancer, haemolytic activity and chemical composition of crude epidermal mucus of fish Mugil cephalus. Int. J. Fish. Aquat. Sci. 2016, 4, 438–443. [Google Scholar]
- Matsumura, K.; Matsunaga, S.; Fusetani, N. Possible involvement of phosphatidylcholine in school recognition in the catfish, Plosotus lineatus. Zool. Sci. 2004, 21, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, K.; Matsunaga, S.; Fusetani, N. Phosphatidylcholine profile-mediated group recognition in fish. J. Exp. Biol. 2007, 210, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- Saglio, P.; Fauconneau, B. Free amino acid concentration in the skin mucus of yellow and silver eel, Anguilla anguilla L. Comp. Biochem. Physiol. 1988, 91A, 101–104. [Google Scholar] [CrossRef]
- Saglio, P.; Fauconneau, B. Free amino acid concentration in the skin mucus of goldfish, Carassius auratus L. influence of feeding. Comp. Biochem. Physiol. A 1985, 82, 67–70. [Google Scholar] [CrossRef]
- Huertas, M.; Hubbard, P.C.; Canario, A.V.M.; Cerda, J. Olfactory sensitivity to conspecific bile fluid and skin mucus in the European eel Anguilla anguilla (L.). J. Fish. Biol. 2007, 70, 1907–1920. [Google Scholar] [CrossRef]
- Matsumura, K. Tetrodotoxin as a pheromone. Nature 1995, 378, 563–564. [Google Scholar] [CrossRef] [PubMed]
- Mathuru, A.S.; Kibat, C.; Cheong, W.F.; Shui, G.; Wenk, M.R.; Friedrich, R.W.; Jesuthasan, S. Chondroitin fragments are odorants that trigger fear behaviour in fish. Curr. Biol. 2012, 22, 538–544. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, R.; Lundberg, S.; Fredriksson, S.A.; Jansson, A.; Nilsson, B.; Wolf-Watz, H. The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J. Bacteriol. 1999, 181, 4308–4317. [Google Scholar] [PubMed]
- Klesius, P.H.; Shoemaker, C.A.; Evans, J.J. Flavobacterium columnare chemotaxis to channel catfish mucus. FEMS Microbiol. Lett. 2008, 288, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Kallert, D.M.; Bauer, W.; Haas, W.; El-Matbouli, M. No shot in the dark: Myxozoans chemically detect fresh fish. Int. J. Parasitol. 2011, 41, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, H.; Umeda, N.; Hirazawa, N.; Ozaki, Y.; Miura, C.; Miura, T. Purification and identification of a glycoprotein that induces the attachment of oncomiracidia of Neobenedenia girellae (Monogenea, Capsalidae). Int. J. Parasitol. 2007, 37, 1483–1490. [Google Scholar] [CrossRef] [PubMed]
- Brooker, A.J.; Shinn, A.P.; Souissi, S.; Bron, J.E. Role of kairomones in host location of the pennellid copepod parasite, Lernaeocera branchialis (L. 1767). Parasitology 2013, 140, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Mordue, A.J.; Birkett, M.A. A review of host finding behaviour in the parasitic sea louse, Lepeophtherius salmonis (Caligidae: Copepoda). J. Fish. Dis. 2009, 32, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Primor, N.; Zadunaisky, J.A.; Murdaugh, H.V.; Boyer, J.L.; Forrest, J.N. Pardaxin increases solute permeability of gills and rectal gland in the dogfish shark (Squalus acanthias). Comp. Biochem. Pysiol. B 1984, 78, 783–790. [Google Scholar] [CrossRef]
- Tachibana, K.; Sakaitanai, M.; Nakanishi, K. Pavoninins: Shark-repelling ichthyotoxins from the defense secretion of the pacific sole. Science 1984, 226, 703–705. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, K.; Gruber, S.H. Shark repellent lipophilic constituents in the defense secretion of the moses sole (Pardachirus marmoratus). Toxicon 1988, 26, 839–853. [Google Scholar] [CrossRef]
- Itoi, S.; Yoshikawa, S.; Asahina, K.; Suzuki, M.; Ishizuka, K.; Sugita, H. Larval pufferfish protected by maternal tetrodotoxin. Toxicon 2014, 78, 35–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisenden, B.D.; Barbour, K. Antipredator responses to skin extract of redbelly dace, Phoxinus eos, by free-ranging populations of redbelly dace and fathead minnows, Pimephales promelas. Environ. Biol. Fish. 2005, 72, 227–233. [Google Scholar] [CrossRef]
- Briand, C.; Fatin, D.; Legault, A. Role of eel odor on the efficiency of an eel, Anguilla anguilla, ladder and trap. Environ. Biol. Fish. 2002, 65, 473–477. [Google Scholar] [CrossRef]
- Baker, C.F.; Hicks, B.J. Atraction of migratory inanga (Galaxias maculatus) and koaro (Galaxias brevippinis) juveniles to adult galaxiid odours. N. Z. J. Mar. Sci. Fresh Res. 2003, 37, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.J.W.; Currie, S. Shoaling fish can size-assort by chemical cues alone. Behav. Ecol. Sociobiol. 2013, 67, 667–673. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sorensen, P.W.; Stacey, N.E. Hormonal and pheromonal control of spawning behavior in the goldfish. Fish. Phys. Biochem. 2002, 26, 71–84. [Google Scholar] [CrossRef]
- Sorensen, P.W.; Pinillos, M.; Scott, A.P. Sexually mature goldfish release large quantities of androstenedione into the water where it functions as a pheromone. Gen. Comp. Endocrinol. 2005, 140, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, G.G.; Fitzsimmons, J.N.; Woods, K.U.; Gerlach, G.; Fisher, H.S. Tactical release of a sexually-selected pheromone in swordtail fish. PLoS ONE 2011, 6, e16994. [Google Scholar] [CrossRef] [PubMed]
- Felix, A.S.; Faustino, A.I.; Cabral, E.M.; Oliveira, R.F. Noninvasive measurement of steroid hormones in zebrafish holding water. Zebrafish 2013, 10, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Buchinger, T.J.; Siefkes, M.J.; Zielinski, B.S.; Brant, C.O.; Li, W. Chemical cues and pheromones in the sea lamprey (Petromyzon marinus). Front. Zool. 2015, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.J.F. Alarm signals in fishes. Rev. Fish. Biol. Fish. 1992, 2, 33–63. [Google Scholar] [CrossRef]
- Pereira, R.T.; Leutz, J.A.C.M.; Valença-Silva, G.; Barcellos, L.J.G.; Barreto, R.E. Ventilation responses to predator odors and conspecific chemical alarm cues in the frillin goby. Physiol. Behav. 2017, 179, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Barbosa Júnior, A.; Magalhães, E.J.; Hoffmann, A.; Ide, L.M. Conspecific and heterospecific alarm substance induces behavioural responses in piau fish Leporinus piau. Acta Ethol. 2010, 13, 119–126. [Google Scholar] [CrossRef]
- Van De Winkel, J.G.J.; Van Kuppevelt, T.H.M.S.M.; Janssen, H.M.J.; Lock, R.A.C. Glycosaminoglycans in the skin mucus of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. B Comp. Biochem. 1986, 85, 473–475. [Google Scholar] [CrossRef]
- Abdullah, N.S.; Saad, S. Rapid detection of N-acetylneuraminic acid from false clownfish using HPLC-FLD for symbiosis to host sea anemone. Asian J. Appl. Sci. 2015, 3, 858–864. [Google Scholar]
- Bordas, M.A.; Balebona, M.C.; Rodriguez-Maroto, J.M.; Borrego, J.J.; Moriñigo, M.A. Chemotaxis of pathogenic Vibrio strains towards mucus surfaces of gilt-head sea bream (Sparus aurata L.). Appl. Environ. Microbiol. 1998, 64, 1573–1575. [Google Scholar] [PubMed]
- Larsen, M.H.; Larsen, J.L.; Olsen, J.E. Chemotaxis of Vibrio anguillarum to fish mucus: Role of the origin of the fish mucus, the fish species and the serogroup of the pathogen. FEMS Microbiol. Ecol. 2001, 38, 77–80. [Google Scholar] [CrossRef]
- Padra, J.T.; Sundh, H.; Sundell, K.; Venkatakrishnan, V.; Jin, C.; Samuelsson, T.; Karlsson, N.G.; Lindén, S.K. Aeromonas salmonicida growth in response to Atlantic salmon mucins differs between epithelial sites, is governed by sialylated acids and N-Acetylhexosamine-containing O-glycans, and is affected by Ca2+. Infect. Immun. 2017, 85, e00189. [Google Scholar] [CrossRef] [PubMed]
- Padra, J.T.; Sund, H.; Jin, C.; Karlsson, N.G.; Sundell, K.; Lindén, S.K. Aeromonas salmonicida binds differentally to mucins isolated from skin and intestinal regions of Atlantic salmon in an N-Acetylneuramini acid-dependent manner. Infect. Immun. 2014, 82, 5235–5245. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Desser, S.S. The longevity of actinosporean spores from oligochaetes of Lake Sasajewun, Algonquin Park, Ontario, and their reaction to fish mucus. J. Parasitol. 2000, 86, 193–195. [Google Scholar] [CrossRef]
- Ito, K.; Okabe, S.; Asakawa, M.; Bessho, K.; Taniyama, S.; Shida, Y.; Ohtsuka, S. Detection of tetrodotoxin (TTX) from two copepods infecting the grass puffer Takifugu niphobles: TTX attracting the parasites? Toxicon 2006, 48, 620–626. [Google Scholar] [CrossRef]
- Nunez-Acuña, G.; Marambio, J.P.; Valenzuela, T.; Wadsworth, S.; Gallardo-Escarate, C. Antimicrobial peptides from Salmon salar skin induce frontal filament development and olfactory/cuticle-related genes in the sea louse Caligus rogercresseyi. Aquaculture 2016, 464, 171–177. [Google Scholar] [CrossRef]
- Grutter, A.S.; Rumney, J.G.; Sinclair-Taylor, T.; Waldie, P.; Franklin, C.E. Fish mucous cocoons: The “mosquito nets” of the sea. Biol. Lett. 2011, 7, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.L. Behavioral and chemical ecology of marine organisms with respect to tetrodotoxin. Mar. Drugs 2010, 8, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Forward, R.B.; Rittschof, D. Alteration of photoresponses involved in diel vertical migration of a crab larva by fish mucus and degradation products of mucopolysaccharides. J. Exp. Mar. Biol. Ecol. 2000, 245, 277–292. [Google Scholar] [CrossRef]
- Schaum, C.E.; Batty, R.; Last, K.S. Smelling danger –alarm cue responses in the polychaete Nereis (Hediste) diversicolor (Mvller, 1776) to potential fish predation. PLoS ONE 2013, 8, e77431. [Google Scholar] [CrossRef] [PubMed]
- Gratzer, B.; Millesi, E.; Walzl, M.; Herler, J. Skin toxins in coral-associated Gobiodon species (Teleostei: Gobiidae) affect predator preference and prey survival. Mar. Ecol. 2015, 36, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Dirnwoeber, M.; Herler, J. Toxic coral gobies reduce the feeding rate of a corallivorous butterflyfish on Acropora corals. Coral Reefs 2013, 32, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Dixson, D.L.; Hay, M.E. Corals chemically cue mutualistic fishes to remove competing seaweeds. Science 2012, 338, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, R.P.; Zimmer, R.K. Molecules of keystone significance: Crucial agents in ecology and resource management, 2013. BioScience 2013, 63, 428–438. [Google Scholar] [CrossRef]
- Reverter, M.; Sasal, P.; Tapissier-Bontemps, N.; Lecchini, D.; Suzuki, M. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: A reservoir of bacterial diversity in coral reef ecosystems. FEMS Microb. Ecol. 2017, 93, fix051. [Google Scholar] [CrossRef] [PubMed]
- Salinas, I.; Magadan, S. Omics in fish mucosal immunity. Dev. Comp. Immunol. 2017, 75, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.M.; Brinchmann, M.F. Skin mucus proteins of lumpsucker (Cyclopterus lumpus). Biochem. Biophys. Rep. 2017, 9, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Ao, J.; Mu, Y.; Xiang, L.-X.; Fan, D.; Feng, M.; Zhang, S.; Shi, Q.; Zhu, L.-Y.; Li, T.; Ding, Y.; et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genet. 2015, 11. [Google Scholar] [CrossRef] [PubMed]
- Carda-Diérguez, M.; Ghai, R.; Rodriguez-Valera, F.; Amaro, C. Wild eel microbiome reveals that skin mucus of fish could be a natural niche for aquatic mucosal pathogen evolution. Microbiome 2017, 5, 162. [Google Scholar] [CrossRef] [PubMed]
- Micallef, G.; Bickerdike, R.; Reiff, C.; Fernandes, J.M.O.; Boxman, A.S.; Martin, S.A.M. Exploring the transcriptome of Atlantic salmon (Salmo salar) skin, a major defense organ. Mar. Biotechnol. 2012, 14, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Li, Q.; Zhou, B.; Song, G.; Li, T.; Cui, Z. De Novo assembly of mud loach (Misgurnus anguillicaudatus) skin transcriptome to identify putative genes involved in immunituy and epidermal mucus secretion. PLoS ONE 2013, 8, e56998. [Google Scholar] [CrossRef] [PubMed]
- Malachowicz, M.; Wenne, R.; Burzynski, A. De novo assembly of the sea trout (Salmo trutta m. trutta) skin transcriptome to identify putative genes involved in the immune response and epidermal mucus secretion. PLoS ONE 2017, 12, e0172282. [Google Scholar] [CrossRef] [PubMed]
- Kumari, J.; Zhang, Z.; Swain, T.; Chi, H.; Niu, C.; Bogwald, J.; Dalmo, R.A. Transcription factor T-bet in Atlantic salmon: Characterization and gene expression in mucosal tissues during Aeromonas salmonicida infection. Front. Immunol. 2015, 6, 345. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Beck, B.; Su, B.; Terhune, J.; Peatman, E. Early muscosal responses in blue catfish (Ictalurus furcatus) skin to Aeromonas hydrophila infection. Fish. Shellfish Immunol. 2013, 34, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Su, B.; Gao, C.; Zhou, S.; Song, L.; Tan, F.; Dong, X.; Ren, Y.; Li, C. Identification and expression analysis of TLR2 in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. Fish. Shellfish Immunol. 2016, 55, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, C.; Ytteborg, E.; Timmerhaus, G.; Host, V.; Handeland, S.; Jogensen, S.M.; Krasnov, A. Atlantic salmon skin barrier functions gradually enhance after seawater transfer. Sci. Rep. 2018, 8, 9510. [Google Scholar] [CrossRef] [PubMed]
- Sveen, L.R.; Grammes, F.T.; Ytteborg, E.; Takle, H.; Jorgensen, S.V. Genome-wide analysis of Atlantic salmon (Salmo salar) mucin genes and their role as biomarkers. PLoS ONE 2017, 12, e0189103. [Google Scholar] [CrossRef] [PubMed]
- Chong, K.; Sock-Ying, T.; Foo, J.; Toong-Jin, L.; Chong, A. Characterisation of proteins in epidermal mucus of discus fish (Symphysodon spp.) during parental phase. Aquaculture 2005, 249, 469–476. [Google Scholar] [CrossRef]
- Fekih-Zaghbib, S.; Fildier, A.; Barrek, S.; Bouhaouala-Zahar, B. A complementary LC-ESI-MS and MALDI-TOF approach for screening antibacterial proteomic signature of farmed European Sea bass mucus. Fish. Shellfish Immunol. 2013, 35, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Cordero, H.; Brinchmann, M.F.; Cuesta, A.; Meseguer, J.; Esteban, M.A. Skin mucus proteome map of European sea bass (Dicentrarchus labrax). Proteomics 2015, 15, 4007–4020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdenegro-Vega, V.A.; Crosbie, P.; Bridle, A.; Leef, M.; Wilson, R.; Nowak, B.F. Differentially expressed proteins in gill and skin mucus of Atlantic salmon (Salmo salar) affected by amoebic gill disease. Fish. Shellfish Immunol. 2014, 40, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Provan, F.; Jensen, L.B.; Uleberg, K.E.; Larssen, E.; Rajalahti, T.; Mullins, J.; Obach, A. Proteomic analysis of epidermal mucus from sea-lice infected Atlantic salmon, Salmo salar L. J. Fish. Dis. 2013, 36, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Su, B.; Zhou, S.; Shang, M.; Yan, H.; Liu, F.; Gao, C.; Tan, F.; Li, C. Identification and expression analysis of toll-like receptor genes (TLR8 and TLR9) in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. Fish. Shellfish Immunol. 2016, 58, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Cordero, H.; Morcillo, P.; Cuesta, A.; Brinchmann, M.F.; Esteban, M.A. Differential proteome profile of skin mucus of gilthead seabream (Sparus aurata) after probiotic intake and/or overcrowding stress. J. Proteom. 2016, 132, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Sánchez, J.; Terova, G.; Simó-Mirabet, P.; Rimoldi, S.; Folkedal, O.; Calduch-Giner, J.A.; Olsen, R.E.; Sitjà-Bobadilla, A. Skin mucus of gilthead seabream (Sparus aurata L.) protein mapping and regulation in chronically stressed fish. Front. Physiol. 2017, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Micallef, G.; Cash, P.; Fernandes, J.M.O.; Rajan, B.; Tinsley, J.W.; Bickerdike, R.; Marin, S.A.M.; Bowman, A.S. Dietary yeast cell wall extract alters the proteome of the skin mucous barrier in Atlantic Salmon (Salmo salar): Increased abundance and expression of a calreticulin-like protein. PLoS ONE 2017, 12, e0169075. [Google Scholar] [CrossRef] [PubMed]
- Kosmides, A.K.; Kamisoglu, K.; Calvano, S.E.; Corbett, S.A.; Androulakis, I.P. Metabolomic fingerprinting: Challenges and opportunities. Crit. Rev. Biomed. Eng. 2013, 41, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Wolfender, J.L.; Glauser, G.; Boccard, J.; Rudaz, S. MS-based plant metabolomics approaches for biomarker discovery. Nat. Prod. Commun. 2009, 4, 1417–1430. [Google Scholar] [PubMed]
- Reverter, M.; Sasal, P.; Banaigs, B.; Lecchini, D.; Lecellier, G.; Tapissier-Bontemps, N. Fish mucus metabolome reveals fish life history traits. Coral Reefs 2017, 36, 463–475. [Google Scholar] [CrossRef]
- Buescher, J.M.; Driggers, E.M. Integration of omics: More than the sum of its parts. Cancer Metab. 2016, 4, 4. [Google Scholar] [CrossRef] [PubMed]
Activity | Molecule | Molecule Family | Fish Species | Reference |
---|---|---|---|---|
Antimicrobial | Glycoproteins | Glycoproteins | Tinca tinca, Anguilla anguilla, Oncorhyncus mykiss | [71] |
Keratin | Protein | Several species | [36] | |
Apolipoprotein 1 | Protein | Several species | [36] | |
Piscidins | α-Helical AMP | Several species | [72,73] | |
Pleurocidins | α-Helical AMP | Pleuronectes americanus | [74] | |
Dicentracins | α-Helical AMP | Dicentrarchus labrax | [75] | |
Chyrsopsins | α-Helical AMP | Sparus aurata | [72,73] | |
Moronecidins | α-Helical AMP | Morone saxatilis x chrysops | [76] | |
Pardaxin | AMP | Pardachirus marmoratus | [77] | |
Pelteobagrin | AMP | Pelteobagrus fulvidraco | [78] | |
β-defensin | Cysteine-rich AMP | Several species | [79,80,81] | |
AJN-10 | Cysteine-rich AMP | Anguilla japonica | [48] | |
Parasin-1 | Histone-derived AMP | Parasilurus asotus | [82] | |
Hipposin | Histone-derived AMP | Hippoglossus hippoglossus | [83] | |
SAMP H1 | Histone-derived AMP | Salmo salar | [84] | |
Onchorrhycin II | Histone-derived AMP | Onchorhyncus mykiss | [85] | |
β-chain of hemoglobin | Protein | Pomatotrygon cf. henlei | [86] | |
Histones (H1, H2A, H2B) | Protein | Several species | [87,88] | |
L-amino oxidase (LAOs) | Protein | Sebastes schlegeli | [46] | |
L40, L36A, L35, S30 | Ribosomal protein | Gadus morhua | [45] | |
Hemoglobin-like protein | Protein | Ictalurus punctatus | [89] | |
Chitinase | Hydrolitic enzyme | Dasyatis pastinaca | [90] | |
Immune-related | Transferrin | Glycoprotein | Several species | [36] |
Misgurnan | Polysaccharide | Misgurnus anguillicaudatus | [91,92] | |
HSC70, HSP60, HSP90 | Heat shock protein | Several species | [36] | |
Peroxiredoxins | Several species | [36] | ||
FK-506 binding protein | Immunophilin/Protein | Gadus morhua | [93] | |
Cyclophilin A | Immunophilin/Protein | Gadus morhua | [93] | |
Cystatin B | protein | Gadus morhua | [93] | |
Mannan binding lectin | Lectin/protein | Gadus morhua | [93] | |
Galectins | Lectin/protein | Gadus morhua | [93] | |
Concavalin A | Lectin/protein | Gadus morhua | [93] | |
Congerins | Lectin/protein | Congus myriaster | [94] | |
AJL-1, AJL-2 | Lectin/protein | Anguilla japonica | [95] | |
Pufflectin | Lectin/protein | Takifugu rubripes | [96] | |
Intelectin | Lectin/protein | Silurus asotus | [97] | |
G-type lysozyme | Lysozyme/protein | Several species | [15,98] | |
C-type lysozyme | Lysozyme/protein | Several species | [15,98] | |
Tumor necrosis factor α | Cytokine, protein | Several species | [15,98] | |
Acid and alkaline phosphatases | Enzyme/proteins | Several species | [98,99] | |
C1q, C3, C5, C6, C9, Complement factor B | Complement/protein | Several species | [36] | |
Ig M, Ig T | Immunoglobulins/Protein | Several species | [100] | |
Interleukins (IL-1β, IL-8, IL-10) | Cytokine, protein | Several species | [15] | |
Calpain | Protein | Gadus morhua | [22] | |
Trypsin | Serine protease/protein | Several species | [15] | |
Metalloproteases | Protease/protein | Several species | [15] | |
Cathepsin B and L | Cysteine protease/protein | Several species | [15] | |
Cathepsin D | Aspartic protease/protein | Several species | [15] | |
Aminopeptidases | Protease/protein | Several species | [15] | |
Cellular metabolism | Ubiquitin | Gadus morhua | [93] | |
Gluthathione hydrolase and transferase | Gadus morhua | [93] | ||
Calreticulin | Gadus morhua | [93] | ||
Carbohydrate metabolism | Citrate synthase | Gadus morhua | [93] | |
Enolase andglyceraldehyde-3-phosphate dehydrogenase | Gadus morhua | [93] | ||
Lipid metabolism | Preapolipoprotein A | Protein | Gadus morhua | [93] |
Fatty-acid binding protein | Protein | Gadus morhua | [93] | |
UV protection | Palythene | MAAs | Several species | [93] |
Asterina-33 | MAAs | Several species | [93] | |
Mycosporine-N-methylamine serine | MAAs | Several species | [101] |
Activity | Molecule Family | Producer Species | Receptor Species | Reference |
---|---|---|---|---|
Intra-Specific Interactions | ||||
Fish shoaling | Phosphatidylcholines | Plosotus lineatus | Plosotus lineatus | [119,120] |
Reproduction | Aminoacids | Carassius auratus, Anguilla anguilla | Carassius auratus, Anguilla anguilla | [121,122] |
Apolar metabolites (prostaglandin-like) | Anguilla anguilla | Anguilla anguilla | [123] | |
Tetrodotoxin | Takifugu niphobles | Takifugu niphobles | [124] | |
Alarm signaling | Chondroitins (glycosaminoglycan) | Danio rerio | Danio rerio | [125] |
Inter-specific interactions | ||||
Microbial chemotaxis | Aminoacids and carbohydrates | Onchorhyncus mykiss | Vibrio anguillarum | [126] |
Lectin-like | Ictalurus punctatus | Flavobacterium columnare | [127] | |
Free nucleosides | Onchorhyncus mykiss | Myxobolus cerebralis, Myxobolus pseudodispar, Henneguya nuesslini | [128] | |
Glycoprotein | Takifugu rubripes | Neobenedenia girellae | [129] | |
Tetradotoxin | Takifugu rubripes | Pseudocaligus fugu | [130] | |
Cathelicidins (peptides) | Salmo salar | Caligus rogercresseyi | [131] | |
Predator repulsion | Pardaxin (AMP) | Pardachirus marmoratus | Squalus acanthias | [132] |
Pavoninin (monoglycosidic cholestanoid) | Pardachirus pavoninus | Mustelus griseus | [133] | |
Mosesin (monoglycosidic cholestanoid) | Pardachirus marmoratus | Negaprion brevirostris | [134] | |
Grammistins (AMP) | Grammistes sexlineatus Pogonoperca punctata | - | [13] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reverter, M.; Tapissier-Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Biological and Ecological Roles of External Fish Mucus: A Review. Fishes 2018, 3, 41. https://doi.org/10.3390/fishes3040041
Reverter M, Tapissier-Bontemps N, Lecchini D, Banaigs B, Sasal P. Biological and Ecological Roles of External Fish Mucus: A Review. Fishes. 2018; 3(4):41. https://doi.org/10.3390/fishes3040041
Chicago/Turabian StyleReverter, Miriam, Nathalie Tapissier-Bontemps, David Lecchini, Bernard Banaigs, and Pierre Sasal. 2018. "Biological and Ecological Roles of External Fish Mucus: A Review" Fishes 3, no. 4: 41. https://doi.org/10.3390/fishes3040041