Previous Issue
Volume 9, June
 
 

Cryptography, Volume 9, Issue 3 (September 2025) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
24 pages, 921 KiB  
Article
Towards Empowering Stakeholders Through Decentralized Trust and Secure Livestock Data Sharing
by Abdul Ghafoor, Iraklis Symeonidis, Anna Rydberg, Cecilia Lindahl and Abdul Qadus Abbasi
Cryptography 2025, 9(3), 52; https://doi.org/10.3390/cryptography9030052 - 23 Jul 2025
Viewed by 288
Abstract
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data [...] Read more.
Cybersecurity represents a critical challenge for data-sharing platforms involving multiple stakeholders, particularly within complex and decentralized systems such as livestock supply chain networks. These systems demand novel approaches, robust security protocols, and advanced data management strategies to address key challenges such as data consistency, transparency, ownership, controlled access or exposure, and privacy-preserving analytics for value-added services. In this paper, we introduced the Framework for Livestock Empowerment and Decentralized Secure Data eXchange (FLEX), as a comprehensive solution grounded on five core design principles: (i) enhanced security and privacy, (ii) human-centric approach, (iii) decentralized and trusted infrastructure, (iv) system resilience, and (v) seamless collaboration across the supply chain. FLEX integrates interdisciplinary innovations, leveraging decentralized infrastructure-based protocols to ensure trust, traceability, and integrity. It employs secure data-sharing protocols and cryptographic techniques to enable controlled information exchange with authorized entities. Additionally, the use of data anonymization techniques ensures privacy. FLEX is designed and implemented using a microservices architecture and edge computing to support modularity and scalable deployment. These components collectively serve as a foundational pillar of the development of a digital product passport. The FLEX architecture adopts a layered design and incorporates robust security controls to mitigate threats identified using the STRIDE threat modeling framework. The evaluation results demonstrate the framework’s effectiveness in countering well-known cyberattacks while fulfilling its intended objectives. The performance evaluation of the implementation further validates its feasibility and stability, particularly as the volume of evidence associated with animal identities increases. All the infrastructure components, along with detailed deployment instructions, are publicly available as open-source libraries on GitHub, promoting transparency and community-driven development for wider public benefit. Full article
(This article belongs to the Special Issue Emerging Trends in Blockchain and Its Applications)
Show Figures

Figure 1

21 pages, 423 KiB  
Article
Multi-Line Prefetch Covert Channel with Huge Pages
by Xinyao Li and Akhilesh Tyagi
Cryptography 2025, 9(3), 51; https://doi.org/10.3390/cryptography9030051 - 18 Jul 2025
Viewed by 227
Abstract
Modern x86 processors incorporate performance-enhancing features such as prefetching mechanisms, cache coherence protocols, and support for large memory pages (e.g., 2 MB huge pages). While these architectural innovations aim to reduce memory access latency, boost throughput, and maintain cache consistency across cores, they [...] Read more.
Modern x86 processors incorporate performance-enhancing features such as prefetching mechanisms, cache coherence protocols, and support for large memory pages (e.g., 2 MB huge pages). While these architectural innovations aim to reduce memory access latency, boost throughput, and maintain cache consistency across cores, they can also expose subtle microarchitectural side channels that adversaries may exploit. This study investigates how the combination of prefetching techniques and huge pages can significantly enhance the throughput and accuracy of covert channels in controlled computing environments. Building on prior work that examined the impact of the MESI cache coherence protocol using single-cache-line access without huge pages, our approach expands the attack surface by simultaneously accessing multiple cache lines across all 512 L1 lines under a 2 MB huge page configuration. As a result, our 9-bit covert channel achieves a peak throughput of 4940 KB/s—substantially exceeding previously reported benchmarks. We further validate our channel on AMD SEV-SNP virtual machines, achieving up to an 88% decoding accuracy using write-access encoding with 2 MB huge pages, demonstrating feasibility even under TEE-enforced virtualization environments. These findings highlight the need for careful consideration and evaluation of the security implications of common performance optimizations with respect to their side-channel potential. Full article
Show Figures

Figure 1

21 pages, 360 KiB  
Article
Efficient Secure Multi-Party Computation for Multi-Dimensional Arithmetics and Its Applications
by Dongyu Wu, Bei Liang, Zijie Lu and Jintai Ding
Cryptography 2025, 9(3), 50; https://doi.org/10.3390/cryptography9030050 - 3 Jul 2025
Viewed by 313
Abstract
Over years of development in secure multi-party computation (MPC), many sophisticated functionalities have been made practical, and multi-dimensional operations occur more and more frequently in MPC protocols, especially in protocols involving datasets of vector elements, such as privacy-preserving biometric identification and privacy-preserving machine [...] Read more.
Over years of development in secure multi-party computation (MPC), many sophisticated functionalities have been made practical, and multi-dimensional operations occur more and more frequently in MPC protocols, especially in protocols involving datasets of vector elements, such as privacy-preserving biometric identification and privacy-preserving machine learning. In this paper, we introduce a new kind of correlation, called tensor triples, which is designed to make multi-dimensional MPC protocols more efficient. We will discuss the generation process, the usage, and the applications of tensor triples and show that they can accelerate privacy-preserving biometric identification protocols, such as FingerCode, Eigenfaces, and FaceNet, by more than 1000 times, with reasonable offline costs, and grant pre-computability for the secure matrix multiplication process in privacy-preserving machine learning protocols, such as SecureML and SecureNN, while achieving similar efficiency. Full article
(This article belongs to the Special Issue Cryptography and Network Security—CANS 2024)
Show Figures

Figure 1

25 pages, 7476 KiB  
Article
Image Encryption with Dual Watermark Based on Chaotic Map
by Ran Chu, Jun Mou and Yuanhui Cui
Cryptography 2025, 9(3), 49; https://doi.org/10.3390/cryptography9030049 - 1 Jul 2025
Viewed by 565
Abstract
A dual watermark and DNA image encryption based on a chaotic map is proposed. Firstly, a new discrete chaotic map is proposed, and the dynamic characteristics are analyzed. Then, the hash value changes initial conditions, and the pseudo-random sequence is generated. The encrypted [...] Read more.
A dual watermark and DNA image encryption based on a chaotic map is proposed. Firstly, a new discrete chaotic map is proposed, and the dynamic characteristics are analyzed. Then, the hash value changes initial conditions, and the pseudo-random sequence is generated. The encrypted copyright image is fused with the feature value of the original image and then encrypted again to form zero-watermarking, which is registered with the copyright certification authority. The zero-watermarking is taken as a robust watermark and embedded into the original image based on a chaotic sequence to ensure its invisibility. Finally, a cross-mutation DNA encryption is proposed. The experimental results verify the performance of encryption and dual watermark copyright authentication, and the ability to resist attacks. Full article
Show Figures

Figure 1

31 pages, 1262 KiB  
Article
Composable Privacy-Preserving Framework for Stakes-Based Online Peer-to-Peer Applications
by Nikola Hristov-Kalamov, Raúl Fernández-Ruiz, Agustín Álvarez-Marquina, Julio Guillén-García, Roberto Gallardo-Cava and Daniel Palacios-Alonso
Cryptography 2025, 9(3), 48; https://doi.org/10.3390/cryptography9030048 - 1 Jul 2025
Viewed by 298
Abstract
As the demand for expansive back-end systems in online applications continues to grow, novel frameworks are necessitated to address the escalating operational demands, energy consumption, and associated costs. Traditional Client–Server models, while offering centralized security and reliability, are characterized by their high deployment [...] Read more.
As the demand for expansive back-end systems in online applications continues to grow, novel frameworks are necessitated to address the escalating operational demands, energy consumption, and associated costs. Traditional Client–Server models, while offering centralized security and reliability, are characterized by their high deployment and maintenance expenses. Conversely, Peer-to-Peer (P2P) models, despite being cost-effective and scalable, are hindered by inherent security and data integrity challenges. Moreover, the lack of a central authority in P2P systems complicates a definitive resolution of scenarios involving stakes, where users cannot withdraw without incurring a tangible loss. In this research work, a hybrid back-end framework is introduced, combining the advantages of both models through the utilization of cryptographic algorithms and Secure Multi-Party Computation (MPC) protocols. The baseline solution is lightweight and fully composable, making it capable of utilizing different more complex slot-in MPC techniques. The proposed framework’s effectiveness is demonstrated through a simplified two-player Spades game, although it is fully generalizable to any application. Evaluations across multiple case studies reveal substantial performance enhancements compared to conventional approaches, particularly post-initialization, highlighting the scheme’s potential as a cost-effective, energy-efficient, and secure solution for modern online applications. Full article
Show Figures

Figure 1

26 pages, 784 KiB  
Article
The Eye-Opening Arbiter-PUF FPGA Implementation with Auto Error Detection
by Holger Mandry, Julian Spiess, Bjoern Driemeyer, Joachim Becker and Maurits Ortmanns
Cryptography 2025, 9(3), 47; https://doi.org/10.3390/cryptography9030047 - 1 Jul 2025
Viewed by 312
Abstract
We present the first implementation of an FPGA-based PUF that leverages the usually contradictory requirements of stability and response time. Many state-of-the-art implementations of PUFs are either slow with a low error rate, like the ring oscillator-PUF, or fast with a higher error [...] Read more.
We present the first implementation of an FPGA-based PUF that leverages the usually contradictory requirements of stability and response time. Many state-of-the-art implementations of PUFs are either slow with a low error rate, like the ring oscillator-PUF, or fast with a higher error rate, like the arbiter-PUF. The presented implementation of an eye-opening PUF uses the phase-integrating effect of a ring oscillator to realize the shortest possible response for the required stability of the readout. This principle also allows for new automatic detection of unstable bits based on counting the number of oscillations required until an arbitration is conducted. This first implementation of an eye-opening PUF reduces the bit error rate to a number under our measurement limits, while the readout time is simultaneously kept as low as ≤1.54 μs, with an average of 0.85 μs. In addition, environmental temperature changes are evaluated, and methods for limiting these effects are discussed. Full article
(This article belongs to the Special Issue Emerging Topics in Hardware Security)
Show Figures

Figure 1

Previous Issue
Back to TopTop