- Article
Role-Based Efficient Proactive Secret Sharing with User Revocation
- Yixuan He,
- Yuta Kodera and
- Yasuyuki Nogami
- + 1 author
Proactive secret sharing (PSS), an extension of secret-sharing schemes, safeguards sensitive data in dynamic distributed networks by periodically refreshing shares to counter adversarial attacks. In our previous work, we constructed a non-interactive proactive secret scheme by integrating threshold homomorphic encryption (ThHE) while reducing the communication complexity to . Not only is refreshing shares important but revoking the shares of users who have left the system is also essential in practical dynamic membership scenarios. However, the previous work was insufficient for supporting explicit user revocation. This study strengthens the description of roles for authorized users and proposes a scheme to achieve non-interactive share refresh and dynamic user management. In each epoch, authorized users are classified into three roles: retain, newly join, and rejoin, and they receive a broadcast of the compact ciphertext encoding both the refresh information and the revocation instructions from the trusted center (dealer). Authorized users independently derive new shares through homomorphic computations, whereas revoked users are unable to generate new shares. Hash functions are used to bind revocation parameters to the cryptographic hashes of valid users in order to guarantee integrity during revocation, allowing for effective verification without compromising non-interactivity. Our new scheme not only extends the revocation structure but also preserves the communication complexity.
11 December 2025


